Понятие о гетерозисе и его значение. Явление гетерозиса Почему гетерозис затухает в последующих поколениях гибридов

Банки 24.04.2020
Банки

В селекции животных и растений особое место занимает явление гибридной мощности, или гетерозиса , которое заключается в следующем.

При скрещивании разных рас, пород животных и сортов растений, а также инбредных линий гибриды F 1 по ряду признаков и свойств часто превосходят исходные родительские организмы. Скрещивание гибридов между собой ведет к затуханию этого эффекта в следующих поколениях. В настоящее время гетерозис установлен для всех изученных видов.

Хотя эффект гетерозиса известен с древнейших времен, его природа до сих пор остается мало изученной. Первое толкование биологического значения гетерозиса в эволюции животных и растений и попытка объяснить механизм этого явления принадлежали Ч. Дарвину. Он систематизировал большое количество фактов и сам ставил опыты по изучению гетерозиса. По мнению Ч. Дарвина, гетерозис служит одной из причин биологической полезности скрещивания в эволюции видов. Перекрестное оплодотворение поддерживается естественным отбором именно потому, что оно служит механизмом сохранения наибольшей гетерозисности,

Глубокий научный анализ явления гетерозиса стал возможен только с начала XX в. после открытия основных генетических закономерностей. При рассмотрении гетерозиса мы будем касаться возникновения его при скрещивании преимущественно инбредированных линий одного вида, поскольку в этом случае легче выяснить его генетический механизм.

С начала нашего столетия на кукурузе стали проводить систематическое исследование скрещиваний между инбредными линиями. При этом Г. Шеллом было показано, что скрещивание некоторых линий дает гибридные растения, более урожайные по зерну и вегетативной массе, чем исходные линии и сорта. Приведены опытные данные, показывающие низкую урожайность инбредных линий, значительное повышение урожайности в F 1 и снижение в F 2 при самоопылении растений F 1 .

За последние 30 лет в ряде стран, в том числе и в нашей, посев гибридными семенами стал основным приемом производства кукурузы как на зерно, так и для силоса. Для получения гибридных семян сначала создают инбредные линии из лучших сортов, отвечающих требованиям данного климатического района (инбредная линия создается в течение 5-6 лет путем самоопыления). При отборе линий оценивают их качества и свойства, которые необходимо получить у будущего гибридного организма. Инбридинг в линиях не может быть эффективным, если он не сопровождается отбором.

Создав большое число инбредных линий, приступают к скрещиванию между ними. Межлинейные гибриды первого поколения оценивают по эффекту гетерозиса ; исходя из этого показателя отбирают линии с лучшей комбинационной ценностью и затем размножают их в больших масштабах для производства гибридных семян. Работа по созданию инбредных линий и оценке их комбинационной ценности постоянно ведется в селекционных учреждениях. Чем больше создано ценных линий, тем вернее й скорее можно отыскать лучшие гибридные комбинации с необходимым сочетанием свойств.

При получении гибридных семян для производственных целей исходные линии, дающие при скрещивании наибольший эффект гетерозиса, высевают рядами, чередуя материнские и отцовские формы. Чтобы обеспечить опыление между ними, с материнских растений удаляют мужские соцветия (метелки). Теперь разработана новая схема производства гибридных семян с использованием цитоплазматической мужской стерильности, что позволило значительно сократить труд на удаление метелок у растений материнской линии. Таким путем получают простые межлинейные гибриды кукурузы. Этот метод в принципе является общим для семеноводства гибридов различных перекрестноопыляющихся растений.

В настоящее время в практике сельского хозяйства простые межлинейные гибриды кукурузы не используются, так как затраты на получение таких семян не окупаются. Теперь широко внедряется в практику посев семян двойных межлинейных гибридов. Последние получают путем скрещивания двух простых гибридов, проявляющих гетерозис.

По данным М. И. Хаджинова и Г. С. Галеева, результаты оценки продуктивности разных гибридов - межсортовых, сортолинейных и двойных межлинейных - показывают, что наиболее продуктивны двойные межлинейные гибриды.

Подбор простых гибридов для получения наиболее продуктивных двойных гибридов является важным этапом их селекции. Лучшие результаты дает скрещивание линий, происходящих из различных сортов. Так, например, если один простой гибрид получен от скрещивания инбредных линий двух сортов А X В, а другой - от скрещивания линий других сортов С х D, то двойной гибрид (А X В) х (С X D) дает гетерозис чаще, чем если бы двойной гибрид был получен от скрещивания простых гибридов, происходящих от линий одного сорта: (А х А 1 х (А 2 х А 3) или (В х B 1) х (В 2 х В 3).

Для успешного развития гибридного семеноводства необходимо исследовать, во-первых, как долго следует вести инбридинг, чтобы получить гомозиготные линии, и, во-вторых, разработать методы более быстрой оценки их комбинационной ценности.

Все, что было сказано в отношении кукурузы, по-видимому, является общим для получения гибридов у других высших перекрестноопыляющихся растений, а также у животных. В настоящее время в птицеводстве и в свиноводстве ряда стран широко используется скрещивание инбредных линий, происходящих из одной или разных пород. Следует особо подчеркнуть, что широкое использование гибридов в животноводстве возможно только при высоком уровне племенной работы и наличии ценных пород, то совершенно ясно, что в большинстве случаев инбредные линии в среднем будут иметь всегда более низкие показатели, чем сорта. О наличии гетерозиса следует говорить лишь в том случае, когда межлинейный гибрид превосходит не только родителей (линии), но и сорта, или породы, от которых произошли эти линии.

Как мы знаем, гены детерминируют свойства организма на всех стадиях онтогенеза начиная с момента оплодотворения. Гены ядра ооцита способны детерминировать свойства цитоплазмы яйцеклетки еще до оплодотворения. Характер реализации генотипа изменяется в зависимости от свойств цитоплазмы зиготы. Таким образом, проявление гетерозиса у гибрида зависит также и от свойств цитоплазмы. Роль цитоплазмы в определении гетерозиса доказывается следующим образом. При реципрокном скрещивании двух линий А X В и В х А гетерозис по одним и тем же свойствам нередко проявляется у гибридов только одного из скрещиваний и не проявляется у гибридов другого.

Проявление гетерозиса обусловлено индивидуальным развитием гибрида. В онтогенезе он реализуется неравномерно. На одних стадиях онтогенеза проявляется гетерозис по одним признакам, а на других - по другим или только по некоторым. Так, в раннем возрасте у одного и того же гибрида может наблюдаться гетерозис в отношении скорости роста отдельных частей организма и повышенной устойчивости к заболеваниям, но его может не быть, например, в отношении устойчивости к неблагоприятной температуре. Гетерозис по этому свойству может проявляться позднее.

Сильное влияние на проявление гетерозиса оказывают также факторы среды, в которых развивается гибридный организм. Есть основание считать, что гетерозис по жизнеспособности и устойчивости к заболеваниям лучше выявляется при неблагоприятных для развития условиях среды. Еще Ч. Дарвином было высказано предположение, что гетерозис у гибридов обусловлен более широкой нормой приспособительных реакций. Исследования последних лет показали, что гибриды F 1 в сравнении с инбредными линиями характеризуются большим разнообразием процессов обмена, участием большего числа различных метаболитов, ростовых веществ и энзимов. Гетерозис проявляется не только в целом организме, но и на клеточном уровне.

Выяснение генетических механизмов гетерозиса остается нерешенной проблемой. В настоящее время имеются три гипотезы, пытающиеся объяснить возникновение гетерозиса:

  1. гетерозиготное состояние по многим генам,
  2. взаимодействие доминантных благоприятных генов,
  3. сверхдоминирование - гетерозигота превосходит гомозиготы.

Как мы уже говорили, при скрещивании гомозиготных инбридированных линий гибриды первого поколения по многим генам приобретают гетерозиготное состояние. При этом действие вредных рецессивных мутантных аллелей подавляется доминантными аллелями обоих родителей. Схематически это можно представить так: одна инбредная линия в гомозиготном состоянии имеет рецессивную аллель одного гена ааВВ, а вторая - другого гена ААbb. Каждая из этих рецессивных аллелей генов в гомозиготном состоянии определяет какую-нибудь недостаточность, которая снижает жизнеспособность инбредной линии. При скрещивании линий ааВВ X ААbb у гибрида объединяются доминантные аллели обоих генов (АаВb). Гибриды F 1 проявят при этом по указанным генам не только гетерозис, но и единообразие. В F 2 число особей с двумя доминантными генами в гетерозиготном состоянии будет лишь 4/16, поэтому гетерозисными оказываются не все особи. В дальнейших поколениях число гетерозигот сокращается, а число гомозигот увеличивается. В силу этих причин гетерозис в последующих поколениях затухает. Такова схема одной из генетических гипотез гетерозиса.

Мы привели пример с двумя генами, но физиологические свойства определяются огромным числом генов. Кроме того, неверно считать, что доминантные аллели всегда положительно, а рецессивные отрицательно влияют на жизнеспособность организма и его продуктивность. Доминантные аллели дикого типа чаще оказывают благоприятное действие, чем рецессивные. Это можно объяснить тем, что неблагоприятные доминантные мутации подвергаются более жесткому отбору - они уже в зиготе и на эмбриональных стадиях подвергаются элиминации, и отбором сохраняются лишь благоприятные. И так как само свойство доминирования гена эволюционирует под контролем отбора, то аллели дикого типа и оказываются более благоприятными для организма. Поэтому подбор в гибридной комбинации доминантных аллелей может скорее обеспечить гетерозис. Если бы гетерозис обусловливался простым набором доминантных аллелей, имеющихся в популяции, то этот набор было бы легко составить путем ряда скрещиваний и получить гетерозисные сочетания. Весьма возможно, что часть пород и сортов выводилась именно путем скрещивания и комбинаций линий, имеющих набор благоприятных доминантных аллелей. Но до сих пор не удавалось закрепить гетерозис в гибридной комбинации F 1 , т. е. получить не расщепляющиеся в F 2 формы.

Д. Джонсом еще в 1917 г. было предложено дополнение к изложенной гипотезе. Согласно Д. Джонсу, разные гены, дающие в сочетании гетерозис, находятся в пределах одной группы сцеплений: например, AbcdE - в одной, а соответственно aBCDe - другой гомологичной хромосоме. Именно это обстоятельство, с точки зрения Д. Джонса, затрудняет отбор в F 2 полностью гомозиготных форм по благоприятным доминантным генам, дающим сочетании гетерозис. Для осуществления такого сочетания доминантных аллелей необходимо, чтобы в этой паре хромосом AbcdE//aBCDe произошел минимум двойной кроссинговер, который привел бы к возникновению хромосомы с одними доминантными аллелями ABCDE. Малая вероятность одновременного осуществления такого события в нескольких хромосомах и является, по мнению Д. Джонса, причиной, затрудняющей закрепление гетерозиса. Гибрид же F 1 содержит все эти доминантные аллели, и поэтому у него наблюдается гетерозис.

Такова схема объяснения гетерозиса согласно второй гипотезе - гипотезе взаимодействия доминантных благоприятных генов, которую называют иногда также гипотезой набора кумулятивных доминантных аллелей, а сам гетерозис при этом - мутационным. Эта гипотеза в целом исходит из представления о простом суммировании эффекта доминантных аллелей с комплементарным действием.

Третья гипотеза исходит из того, что гетерозиготное состояние аллелей имеет превосходство над гомозиготным (АА < Aa > аа). Здесь можно допустить благоприятное трансположение аллелей дикого типа и мутантных аллелей, которое каким-то образом усиливает эффект действия генов. Указанное объяснение гетерозиса называют гипотезой сверхдоминирования.

Ни одна из трех гипотез не может считаться единственно правильной. Сейчас преждевременно отдавать предпочтение той или другой. Вероятно, они все окажутся правильными, но для разных случаев. Наверное, каждый из механизмов, предусматриваемых этими гипотезами, играет роль в определении гибридной мощности. Гетерозис является сложным явлением как по механизму возникновения, так и по проявлению его в онтогенезе.

Очевидно, окончательный вывод о генетических механизмах гетерозиса можно будет сделать лишь после того, как раскроется картина взаимодействия генов в генетической системе на биохимическом и молекулярном уровнях. Как мы уже знаем, подавление проявления мутаций с помощью супрессоров позволяет исправлять нарушения в действии гена и его аллелей. Возможно, что явление гетерозиса есть суммарный результат работы не основных генов, определяющих развитие признаков организма, а набора супрессирующих генов в генотипе. Важным моментом изучения гетерозиса становится исследование плазменных отношений.

Основной задачей использования гетерозиса в селекции является закрепление его, т. е. сохранение эффекта гетерозиса в процессе воспроизведения гибрида. Решение этой задачи мыслится в нескольких аспектах: во-первых, закрепление гетерозиса путем перевода гибридного организма с полового размножения на апомиктическое, что, по-видимому, возможно для некоторых растений; во-вторых, закрепление гетерозиса путем перевода диплоидного гибрида, проявляющего гетерозис, в полиплоидное состояние. В этом случае гетерозиготная комбинация генов будет сохраняться дольше.

У вегетативно размножающихся растений поддержание ценных гибридных комбинаций, полученных половым путем, осуществляется вегетативным размножением (черенками, прививками, клубнями и т. д.).

Существует ряд других путей поддержания гетерозиса в ряду поколений, однако все они еще недостаточно разработаны и проверена.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

При скрещивании некоторых сортов какой-либо культуры гибриды F1 часто отличаются от родительских форм более мощным ростом, лучшей жизнеспособностью, более высокой продуктивностью, устойчивостью к болезням и резким колебаниям погоды. Такое свойство гибридов первого поколения называют гетерозисом.

Гетерозис - это свойство гибридов первого поколения превосходить родителей или лучшую из родительских форм по определенным биологическим и хозяйственно ценным признакам и свойствам, по степени их выраженности.

Проявление гетерозиса зависит от вида генофонда популяции, физиологического состояния популяции на определенном этапе развития, от условий климата, сезона, солнечной инсоляции, питания, густоты посева или посадки, напряженности инфекционного фона или насекомых вредителей или других факторов и обстоятельств.

Истинный (положительный) гетерозис проявляется в изменении выраженности признака у гибрида в сторону увеличения по сравнению с родительскими формами (например, повышенное содержание витаминов, белков, биологически активных веществ, улучшение лежкости продукции и др.). Однако при скрещивании могут возникнуть депрессивные явления снижения потомством показателя по какому либо признаку лучшего родителя. Такое изменение выраженности признака в сторону ослабления происходит при отрицательном гетерозисе.

Гетерозис может охватывать разные признаки и свойства организма. А. Густафсон предложил различать три основные типа гетерозиса: соматический, репродуктивный и адаптивный. Гетерозис соматический - более мощное развитие вегетативных органов гибридов; репродуктивный - более мощное развитие репродуктивных органов, повышенная фертильность, высокий урожай семян, плодов; адаптивный гетерозис - повышение приспособленности гибридов к меняющимся условиям среды и их конкурентоспособность в борьбе за существование.

Гетерозисные гибриды первого поколения F1 проявляют повышенную жизнеспособность, мощность развития, особо сильную способность к росту, большую скороспелость, урожайность и выравненность, повышенную устойчивость к болезням, высокую товарность, улучшение качества плодов (повышенное содержание сухого вещества).

Гетерозис может проявляться в изменении физиологических признаков - усилении холодостойкости, засухоустойчивости, улучшении лежкости, общей устойчивости к патогенам.

Гетерозис проявляется в более быстром росте растений в начальных и последующих фазах, в ускоренном образовании новых листьев, в увеличении размера каждого листа и общей площади листовой поверхности, в мощности корневой системы и др. гетерозис проявляется также в таких признаках, как высота закладки соцветий, количество соцветий на главном стебле и боковых побегах, количество цветков в соцветии и т.д.

Гетерозис наблюдается при скрещиваниях между сортами, а также между отдаленными в генетическом и экологическом отношении видами и формами. Наиболее же сильно он проявляется и поддается управлению при скрещивании самоопыленных линий. Инцухт дает возможность разложить сорт-популяцию на составляющие его биотипы (линии).

Проявление гетерозиса наблюдается в течение всего жизненного цикла растения с момента до окончания формирования семени.

Тот или иной тип проявления гетерозиса и степень изменчивости выражения признака при этом в основном зависят от подбора скрещиваемых сортов. Обычно гетерозис бывает тем сильнее выражен, чем больше различаются скрещиваемые формы по морфологическим, биологическим, физиологическим и другим признакам. Особенно сильно проявляется гетерозис, если скрещиваемые сорта относятся к разным группам по скороспелости, способу выращивания, если районированы они в разных климатических зонах или культивируются в разное время года, при скрещивании инбредных линий перекрестноопыляющихся растений, полученных в результате самоопыления в течение нескольких поколений .

Одной из причин эффекта гетерозиса является устранение в гетерозиготном организме вредного действия рецессивных генов. Другой механизм гетерозиса состоит в объединении в гибриде благоприятных доминантных генов, присутствующих в организме родителей и объединяющихся у гибрида. Гетерозис может возникнуть и в силу того, что некоторые гены более благоприятно проявляются, находясь в организме в гетерозиготном состоянии.

ЗНАЧЕНИЕ СЕЛЕКЦИИ НА ГЕТЕРОЗИС

Селекцией на гетерозис называют создание гибридов первого поколения, отличающихся высоким гетерозисом по урожайности, качеству продукции и другим хозяйственно важным признакам. В отличие от комбинационной селекции, при которой скрещивания проводят в начале селекционного процесса, чтобы создать генетическую изменчивость для отбора, при селекции гетерозисных гибридов скрещивание служит для массового получения семян и их дальнейшего практического использования в производстве и представляет последний этап селекционного процесса. Селекция гетерозисных гибридов имеет большое значение для сельскохозяйственного производства. Эти гибриды часто по урожайности превышают обычные свободноопыляющиеся сорта на 30% и выше. В некоторых случаях гетерозисный эффект достигает 50%.

Гетерозис – увеличение жизнеспособности гибридов вследствие унаследования определённого набора аллелей различных генов от своих разнородных родителей. Это явление противоположно результатам инбридинга, или близкородственного скрещивания, приводящего к гомозиготности. Увеличение жизнеспособности гибридов первого поколения в результате гетерозиса связывают с переходом генов в гетерозиготное состояние, при этом рецессивные летальные и полулетальные аллели, снижающие жизнеспособность гибридов, не проявляется. Также в результате гетерозиготации могут образовываться несколько аллельных вариантов фермента, действующих в сумме более эффективно, чем поодиночке (в гомозиготном состоянии). Механизм действия гетерозиса ещё не окончательно выяснен. Явление гетерозиса зависит от степени родства между родительскими особями: чем более отдалёнными родственниками являются родительские особи, тем в большей степени проявляется эффект гетерозиса у гибридов первого поколения. Явление гетерозиса наблюдалось ещё до открытия законов Менделя И. Г. Кёльрейтером, термин «гетерозис» (в переводе с греческого языка – изменение, превращение), в 1908 Г. Шулл описал гетерозис у кукурузы. У растений (по А. Густафсону) выделяют три формы гетерозиса: т. н. репродуктивный гетерозис, в результате которого повышается плодородность гибридов и урожайность, соматический гетерозис, увеличивающий линейные размеры гибридного растения и его массу, и приспособительный гетерозис (называемый также адаптивным), повышающий приспособленность гибридов к действию неблагоприятных факторов окружающей среды. Выделяют пять основных форм проявления гетерозиса по хозяйственно-полезным признакам, используемых в животноводстве;

1. Гибриды и помеси первого поколения превосходят своих родителей поживой массе и жизнеспособности.

2. Помеси первого поколения поживой массе занимают промежуточное положение, но заметно превосходят родителей по плодовитости и жизнеспособности.

3. Гибриды первого поколения превосходят родителей по конституциональной крепости, долголетию, физической работоспособности, при полной или частичной утере плодовитости.

4. Каждый отдельно взятый признак ведет себя по промежуточному типу наследования, а в отношении конечной продукции наблюдается типичный гетерозис.

5. Гибриды (помеси) не превосходят по продукции лучшую родительскую форму, но имеют более высокий уровень, нежели среднеарифметический показатель обоих родителей.

На проявление гетерозиса при скрещивании, на результаты последнего влияют ряд факторов; исходные породы и их сочетаемость, материнская и отцовская наследственность, условия кормления и содержания. Успех работы при скрещивании прежде всего зависит от правильного выбора пород и их комбинационной способности. Не все породы могут эффективно скрещиваться между собой и давать желаемое помесное потомство. Только хорошо отселекционированные и проверенные на сочетаемость породы способны при скрещивании передавать свои ценные качества потомкам-помесям. Каждая порода отличается от другой своим генофондом, т.е. набором тех генов, которые обуславливают уровень продуктивности, внешние формы, физиологические и анатомические особенности особей данной породы. Сочетаемость пород – это соответствие генофонда одной породы генофонду другой. В настоящее время в животноводстве нет достаточно надежных методов, которые позволили бы заранее прогнозировать наиболее удачные сочетания.

Остается только испытание на сочетаемость разных пород с перенесением на практику наиболее удачных. Также трудно определиться с выбором материнской и отцовской пород, хотя при скрещивании установлены существенные различия между помесями от прямого и обратного спаривания. Многие отмечают преобладающее влияние материнского организма на наследование хозяйственно-полезных признаков у потомства. Материнский эффект определяется цитоплазматической наследственностью и влиянием материнского организма как питательной среды на эмбрион в период плодоношения. Однако есть примеры преобладания влияния на отдельные признаки отцовской наследственности, что трудно объяснить. Хотя однозначно можно утверждать, что для успеха скрещивания индивидуальный подбор производителей имеет не меньшее значение, чем при чистопородном разведении. Большое значение на признаки потомства оказывают условия содержания животных. Известно, что помеси, обладающие комбинированной наследственностью, значительно сильнее, чем чистопородные животные, реагируют на изменения окружающей среды. Поэтому кормление и содержание наряду с генетическими особенностями определяют результаты скрещивания. Так, при спаривании низкопродуктивного аборигенного скота с культурными породами в скудных условиях кормления доминировали признаки первых, т.е. эффект скрещивания был отрицательным. В тоже время интенсивное кормление помесного молодняка способствует повышению живой массы на 20–30% и исправлению ряда экстерьерных недостатков. Итак, успех скрещивания зависит от целого комплекса зоотехнических мероприятий, включающего умелый выбор исходных пород, подбор родительских пар, организацию полноценного кормления как родителей, так и полученного от них потомства.

Практика межпородной и межлинейной гибридизации свидетельствует, что не удалось еще получить гарантированный гетерозис для конкретных отцовских форм, что вызывает проведение большого числа анализирующих скрещиваний. Поэтому современные селекционные программы предусматривают создание комплекса специализированных, сочетающихся линий, внутрипородных типов для получения гетерозиса у гибридов по продуктивности и воспроизводительным качествам. Эффективность такой селекции теоретически наиболее высока для признаков с низкой наследуемостью и с большой долей генов, проявляющих доминирование и сверхдоминирование. Несмотря на то, что иногда повышение продуктивности в результате гетерозиса достигает 15%, использование этого явления сопровождается неадекватными затратами на создание и сохранение исходных линий и пород, преодоление инбредной депрессии, проведение тестовых испытаний на сочетаемость, обеспечение раздельного содержания отдельных пород. При этом следует учесть, что селекцию на поддержание сочетаемости необходимо проводить постоянно и для каждого поколения гибридов размножать исходные родительские формы. Основой для разработки селекционных программ, рассчитанных на использование гетерозиса на протяжении одного поколения, является снижение эффекта гетерозиса при последующем разведении «в себе» гибридных особей в результате выщепления исходных родительских форм и утраты гетерозиготности.

Представление о гетерозисе как способности особей первого поколения превосходить лучшую из родительских форм, не способствует проведению работ по изучению гетерозиса во втором поколении. Очевидно, затухание гетерозиса при разведении «в себе» помесей связано со сменой частоты исходных генотипов. Генетически классическим считается способ получения многократного гетерозиса, основанный на переменных скрещиваниях. Но он имеет недостатки – требует репродукции чистых линий и при увеличении числа линий, пород больше трех приводит к сложным ротационным схемам, для реализации которых необходимо продолжительное время. Существенный недостаток и в том, что одни и те же породы выступают как материнские или отцовские, а это в случае специализированных пород, нежелательно. Учитывая то, что над проблемой получения многократного гетерозиса и ныне активно работают, есть смысл рассмотреть теоретические подходы к ней. При этом необходимо учесть, что основной предпосылкой получения многократного гетерозиса является необходимость удешевления гетерозисной селекции путем закрепления гетерозиса в нескольких поколениях в потомстве определенной гетерозиготности. К многократному гетерозису относят все случаи, когда его используют дальше первого поколения гибридов и до 3–4 поколений сохраняется его эффект. При исследовании возможностей получения такого явления в животноводстве обозначим лишь теоретические пути его осуществления на основе партеногенеза, полиплодии, генетического клонирования. (Азимов А. 1997.)

Способ предназначен для использования в сельском хозяйстве. Цель - значительное повышение эффективности гибридизации сельскохозяйственных культур. Гетерозис гибридов проявляется только в первом поколении. Установлено, что затухание гетерозиса в последующих поколениях гибрида в основном происходит из-за перехода рецессивных леталей, полулеталей и субвиталей в гомозиготное состояние и нарушения комплекса благоприятных скоординировано действующих генов. Устранение этих явлений приводит к закреплению гетерозиса в последующих поколениях. Оно выполняется посредством возвратных скрещиваний гибрида с искусственно полученными от него абсолютно гомозиготными андрогенетическими сыновьями, после чего генетически трансформируемый гибрид практически полностью очищается от вредных генов и одновременно сохраняет в целости комплекс благоприятных генов, определяющих гетерозис. Это позволяет полностью сохранить гетерозис в последующих уже промышленных поколениях, полученных в результате несложных внутригибридных скрещиваний, что доказано экспериментами на тутовом шелкопряде. Способ также предназначен для сельскохозяйственных растений, у которых возможно получение андрогенетических абсолютно гомозиготных особей. 3 з.п.ф-лы, 4 ил.

Изобретение относится к способам, используемым в сельском хозяйстве. Общеизвестен естественный способ сохранения гетерозиса в ряду последующих поколений посредством вегетативного размножения у растений, дополнительно обладающих половым размножением. Многочисленные исследования в этой области на других растениях, не способных к вегетативному размножению, и животных не увенчались полным успехом (1), потому что природа гетерозиса все еще оставалась большой загадкой генетики (2). В литературе не было высказано даже сколько-нибудь реальных теоретических подходов к кардинальному решению этой важной проблемы. У некоторых животных гетерозис можно закрепить клонированием. Однако этим способом пока получают единицы идентичных матери потомков. У тутового шелкопряда клонирование разработано более успешно, но для практического использования в плане сохранения гетерозиса оно не приемлемо по двум причинам: из-за большой трудоемкости массового получения партеногенетического потомства и меньшей, по сравнению с самцами, продуктивности женского пола, из которого состоят клоны (3). Перспективные результаты получены авторами после того, как они разработали метод мейотического партеногенеза и получили от партеногенетических клонов абсолютно гомозиготных самцов тутового шелкопряда (4). Их возвратное скрещивание с партеногенетическим клоном гибридного происхождения позволило закреплять гетерозис в беккроссных поколениях (5). Но это было открытием лишь принципиальной возможности закрепления гетерозиса. Практического же значения этот метод не имел и, следовательно, не мог быть запатентован в качестве способа. Это объяснялось тем, что гомозиготных самцов могли получать только от высокожизнеспособных женских партеноклонов с высокой склонностью к партеногенезу. У коммерческих пород и гибридов абсолютных гомозиготов практически получать не удавалось, поэтому мейотический партеногенез был использован только для рекогносцировочных опытов, направленных на выяснение возможности решения проблемы. Изобретение способа закрепления гетерозиса у тутового шелкопряда, пригодного для производства, стало возможным после открытия авторами односпермичного андрогенеза (1998, неопубликовано). Сущность изобретения. Гетерозис проявляется только в первом поколении гибрида. В последующих поколениях, начиная со второго, он резко затухает. Поэтому, чтобы вырастить гетерозисный гибрид приходится каждый раз вновь повторять межсортовую или межпородную гибридизацию. Этот процесс технически сложный и весьма трудоемкий, а применительно ко многим растительным культурам он просто невыполним, хотя их гибриды, если бы они были получены, дали бы удивительно высокие урожаи по сравнению с родительскими формами. Примером этого служат многие сельскохозяйственные растения. Эти проблемы были бы кардинально решены, если бы удалось разработать эффективный способ закрепления гетерозиса в последующих поколениях. Такой способ одновременно открыл бы совершенно новый подход к созданию еще более выдающихся по гетерозису гибридов. Известно, что любой промышленный гибрид получают посредством скрещивания огромной массы индивидуумов двух родительских форм. А эти индивидуумы весьма дифференцированы по комбинационной способности. Поэтому производство довольствуется средним гетерозисом по всем вместе взятым индивидуальным гибридам, каждый из которых происходит от половых клеток двух родителей. В то время как редкие индивидуальные гибриды обладают поистине фантастическим гетерозисом, в следующем поколении он безвозвратно теряется. Предлагаемый способ позволит закреплять этот мощный гетерозис в последующих поколениях гибрида и размножать его в неограниченных количествах. Одной из причин гетерозиса считали благоприятное действие на развитие и жизнедеятельность организма гетерозиготности вообще всех генов, независимо от их специфичности (гипотеза "сверхдоминирования"). Авторы на тутовом шелкопряде экспериментально доказали, что гетерозис возникает в результате двух главных причин. Первая - интеграция в генотипе гибридов большого количества скоординированных в своем действии благоприятных генов, контролирующих жизнеспособность. Вторая - переход в гетерозиготное состояние не всех генов генотипа, а только рецессивных деталей, полулеталей и субвиталей (4). На фиг. 1 приведены доказательства этого. Следовательно, снижение гетерозиса в последующих поколениях гибридов в основном объясняется неизбежным при скрещивании гибрида в его пределах переходом части рецессивных деталей и полулеталей в гомозиготное состояние и нарушением в процессе мейоза комплекса благоприятных генов, повышающих жизнеспособность. Поэтому авторы пришли к выводу, что закрепить гетерозис в последующих поколениях можно, если в генотипе гибрида полностью сохранить или даже улучшить комплекс всех благоприятных генов и практически полностью удалить из генотипа рецессивные летали и полулетали. Эта задача решена авторами следующим способом. В качестве исходного материала выбирают генетически отдаленные две породы, от скрещивания которых возникают наиболее высокогетерозисные гибриды. От этих двух пород получают серию индивидуальных гибридов, каждый из которых происходит только от двух родителей. Путем сравнительных испытаний выбирают 10 лучших по гетерозису индивидуальных гибридов. От каждого гибрида получают абсолютно гомозиготных потомков методом односпермического андрогенеза, выполнение которого доступно селекционерам. Для этого неосемененных самок любой породы облучают - лучами в дозе 80 кр. Затем самки спариваются с самцами индивидуальных гибридов. Отложенные яйца в возрасте 60-80 минут после откладки при температуре 25 o C прогревают 210 минут в воде, нагретой до 38 o C. Абсолютные гомозиготы в подавляющем большинстве погибают на разных стадиях развития из-за того, что в гаплоидном генотипе, доставшимся им от отца, содержится много летальных, полулетальных и субвитальных генов. При диплоидизации ядра пронуклеуса они переходят в гомозиготное состояние, чаще всего несовместимое с нормальным развитием организма. Выживают только те гомозиготы, которым в ходе мейоза не досталось или досталось, но очень мало, вредных генов, в основном слабого действия (5). Выращенных абсолютно гомозиготных особей возвратно (беккросс) скрещивают с исходным гибридом, получая, таким образом, первое беккроссное поколение (фиг. 2). Созревание исходного гибрида и абсолютных гомозиготов должно быть синхронизировано путем задержки начала выращивания первого на время, равное продолжительности цикла развития взятого объекта. Простые расчеты показывают, что в беккроссном потомстве новые гомозиготы сильных по вредности генов не могут появиться, а гомозиготы субвитальных генов, если они не были элиминированны у выживших гомозиготных андрогенов, подавляются комплексом благоприятных генов, доставшихся от исходного гибрида. Вот поэтому гетерозис сохраняется во всех беккроссных поколениях (фиг. 3). С первыми и последующими беккроссными поколениями поступают точно так же, как и с исходным гибридом (фиг. 2). Дальнейшие беккроссы приводят, во-первых, к почти полному удалению деталей и полулеталей из генотипа гибрида и, во-вторых, к сохранению той численно преобладающей части генов, которые обеспечили гетерозис в исходном гибриде. После 5 или 6 беккроссов очищенный от вредных генов гибрид массово размножают путем внутригибридного скрещивания. У потомства, полученного в результате такого размножения, гетерозис не только сохраняется на уровне исходного гибрида, но и даже несколько усиливается (фиг. 4), что свидетельствует о полном решении проблемы закрепления гетерозиса у тутового шелкопряда. Полная общность генетических основ гетерозиса и его затухания у животных и растений позволяет данное изобретение рекомендовать для закрепления гетерозиса у сельскохозяйственных растений, у которых возможно получение от гибридов абсолютно гомозиготных особей андрогенного происхождения. Их получают путем стимулирования эмбрионального развития гаплоидной пыльцы с последующим превращением ее зародышевых клеток в диплоидные, развивающиеся в жизнеспособные фертильные растения. Методика варьирует в зависимости от биологических особенностей культуры. Графические материалы. Фиг. 1 А. Показана прямая зависимость между урожаем коконов тутового шелкопряда - основной показатель гетерозиса (1) и уровнями гетерозиготности (2) генетических вариантов гибрида неочищенных от леталей и полулеталей. Показатели урожая и гетерозиготности исходного гибрида первого варианта (1) приняты за 100%. Б. Показано полное отсутствие зависимости между урожаем коконов (1) и уровнями гетерозиготности (2) у генетических вариантов, очищенных от леталей и полулеталей. Это доказывает несостоятельность гипотезы гетерозиса "сверхдоминирования" и возможность сохранения гетерозиса в беккроссных поколениях. Фиг. 2. Схема очищения гибридов тутового шелкопряда от рецессивных леталей и полулеталей посредством возвратных скрещиваний гибридов с полученными от них абсолютно гомозиготными самцами А и Б породы. F 1 , F 2 - гибрид первого и второго поколения. F b1 , F b2 - первое и второе беккроссное поколение. Фиг. 3. Жизнеспособность исходного гибрида (1) и беккросных поколений (II), полученных по схеме, представленной на фиг. 2. Фиг. 4. Демонстрирует показатели частоты вредных генов в гетерозиготном состоянии (1), массы кокона (2), жизнеспособности (3) у исходного гибрида (I) и трансформируемого гибрида после четырех последовательных возвратных скрещиваний с гомозиготными самцами (II), а также у трех последовательных инбредных поколений (III-V). Выкормка каждого генетического варианта проводилась одновременно с контрольным партеногенетическим гибридом, показатели которого принимались за 100%. Во всех генетических вариантах гетерозис выше, чем у исходного гибрида, что свидетельствует о кардинальном решении проблемы закрепления гетерозиса. Стабильное сохранение гетерозиса во всех беккроссных поколениях уже свидетельствовало о принципиальной эффективности разрабатываемого способа. Но беккроссные поколения не применимы в практике из-за сложности их получения. Поэтому в заключительном эксперименте на тутовом шелкопряде изучали возможность закрепления гетерозиса уже не в беккроссных, а в нормальных поколениях. В этом заключительном опыте исходный гибрид вначале подвергался четырем беккроссам с гомозигонтыми самцами. В результате частота гетерозигот по леталям и полулеталям снизилась до 6,2% со 100% в исходном материале. Далее беккроссные поколения размножали инбридингом. Каждое инбредное поколение получали посредствам скрещивания брата с сестрой в пределах каждой отдельно взятой семьи. В результате частота вредных генов, погашенных нормальными аллелями, снизилась в первом инбредном поколении до 4,7, а во втором и третьем - до 3,5 и 2,6% соответственно. Инбредное размножение исключительно пагубно влияет на все хозяйственные показатели нормального инбредного потомства. Но в нашем опыте оно не только не оказало угнетающего действия на инбредное потомство, а, наоборот, привело к повышению у него средней массы одного кокона и жизнеспособности по сравнению с исходным, контрольным гибридом (фиг. 4). Следовательно, проблема закрепления гетерозиса у гибридов последующих поколений кардинально решена. БИБЛИОГРАФИЧЕСКИЕ ДАННЫЕ 1. Инге-Вечтомов С. И. 1989. Генетика с основами селекции. М. "Высшая школа", на стр. 557. 2. Хатт Ф. 1969. Генетика животных. Пер. с англ. под ред. д-ра биол. наук Я.Л. Глембоцкого. М., "Колос", на стр. 322. 3. Струнников В. А. 1998. Клонирование животных: теория и практика. - Природа, N 7, с.3 -9. 4. Струнников В.А. 1987. Генетические методы селекции и регуляции пола тутового шелкопряда. М. ВО "Агропромиздат", на стр. 35. 5. Струнников В.А. 1994. Природа гетерозиса и новые методы его повышения. - М. Наука, 108 с.

Формула изобретения

1. Способ закрепления гетерозиса гибрида в последующих поколениях, включающий использование возвратных скрещиваний с абсолютно гомозиготными самцами, отличающийся тем, что для сохранения в генотипе гибрида благоприятных генов, определяющих гетерозис, и одновременно для удаления леталей и полулеталей применяют возвратные скрещивания гибридов с полученными от них методом односпермичного андрогенеза андрогенетическими абсолютно гомозиготными самцами и затем после нескольких беккроссов переключают беккроссные поколения на обычное массовое бисексуальное размножение посредством внутригибридных скрещиваний. 2. Способ по п.1, отличающийся тем, что абсолютно гомозиготных самцов тутового шелкопряда получают методом односпермичного андрогенеза, выполняемого путем облучения яиц в теле самки - лучами в дозе 80 кр., последующего спаривания с самцами исходных индивидуальных гибридов и прогрева облученных осемененных яиц в возрасте 60 - 80 мин в воде, нагретой до 38 o C, в течение 210 мин. 3. Способ по п.1, отличающийся тем, что, с целью резкого повышения гетерозиса гибридов промышленного назначения, закрепляют гетерозис только у возникших от двух родителей индивидуальных гибридов, проявивших максимальный гетерозис по сравнению с другими одновременно испытуемыми гибридами. 4. Способ по п.1, отличающийся тем, что способ закрепления гетерозиса применяют на гибридах сельскохозяйственных растений, у которых возможно получение андрогенетических абсолютно гомозиготных индивидуумов известными для каждого вида варьирующими методами стимулирования пыльцы к эмбриональному развитию и превращения развивающихся из нее зародышевых клеток в диплоидные абсолютно гомозиготные клетки, развивающиеся в фертильные растения.

Рекомендуем почитать

Наверх