Построенную электростанцию. Как собрать небольшую солнечную электростанцию

Поиск работы 20.12.2020
Поиск работы

Устройство и виды ветровых электростанций

Ветровые электростанции являются одним из вариантов получения альтернативной энергии. Энергия ветра относится к возобновляемому виду наряду с солнечной, термальной и т. п. Потенциал ветровой энергетики, конечно, меньше солнечной, но всё равно перекрывает современные потребности человечества в энергии. КПД ветровых электростанций небольшой, и составляет в лучшем случае 30 процентов. Но всё равно их строительство продолжается, и они считаются довольно перспективным видом энергетических установок.

Ветровая электростанция состоит из определённого количества генераторов, которые собраны вместе. Крупные ветровые электростанции включают в себя до 100 и более отдельно стоящих ветрогенераторов. В литературе также можно встретить название ─ ветровые фермы. Сразу стоит сказать, что подобные электростанции можно строить только в определённых регионах планеты. В этих местах средняя скорость ветра должна быть не менее 4,5 метра в секунду.


Перед тем как построить ветровую электростанцию в каком-либо месте, там проводится длительное исследование характеристик ветра. Для этого специалисты используют такие приборы, как анемометры. Они устанавливаются на высоте примерно 30─100 метров, и 1─2 года накапливается информация о направлении и скорости ветра в этом месте. Затем на основании полученных сведений составляются карты доступности ветровой энергетики. Эти карты и различные методики расчёта используются теми предпринимателями, которые хотят оценить перспективность строительства ветровых электростанций в каком-либо регионе мира.

Стоит отметить, что стандартная информация о метеорологов не годится при оценке целесообразности строительства ветровой электростанции. Ведь информацию о ветре метеорологи собирают на высоте до 10 метров над поверхностью Земли. Практически во всех странах мира специальные карты доступности энергии ветра создаются либо государством, либо при его участии.

Среди примеров этого можно назвать атлас ветров и компьютерную модель WEST для Канады. Этим занимались министерство природных ресурсов и министерство развития этой страны. Благодаря этим сведениям предприниматели могут планировать строительство ветровых электростанций в любой точке Канады. В Организации Объединённых Наций ещё в 2005 году была создана карта ветров для 19 развивающихся стран.



Ветрогенераторы, работающие в составе ветровых электростанций, устанавливают на различных возвышенностях естественного или искусственного происхождения. И это неслучайно, поскольку скорость ветра тем больше, чем выше от поверхности планеты. Поэтому ветрогенераторы работают на специальных башнях, высота которых от 30 до 60 метров. При планировании ветровой электростанции также принимается в расчёт наличие деревьев, крупных строений и т. п. Всё это также может повлиять на скорость ветра.

Кроме того, при строительстве подобных электростанций должны учитываться требования к охране ОС и влияние на человека. Ведь от подобных установок исходит немалый шум. В европейских странах давно приняты законы, которые ограничивают максимальный уровень шума ветровых энергетических установок. Днём этот показатель не должен превышать 45 дБ, а ночью ─ 35 дБ. Подобные установки должны находиться на расстоянии не менее 300 метров от жилых домов. Кроме того, современные ветровые электростанции останавливаются на время перелёта птиц.

Ветровые электростанции, как правило, занимают большое пространство. Для их строительства используются такие регионы, которые мало заселены и не вовлечены в экономическую деятельность. Среди них можно назвать:

  • Прибрежные районы;
  • Шельф;
  • Пустыни;
  • Горы.

В состав ветровых электростанций входят отдельно стоящие ветрогенераторы. Давайте, вкратце рассмотрим, какая у них конструкция. В неё входят следующие узлы и детали:

  • Ротор с лопастями. Занимается преобразованием ветровой энергии в энергию вращения. Как правило, роторы имеет три лопасти. Лопасти современных ветрогенераторов могут достигать 30 метров в длину. В большинстве случаев их изготавливают из полиэстера, который армирован стекловолокном. Скорость вращения лопастей в среднем составляет 10─24 оборота в минуту;
  • Редуктор. Его задача заключается в повышении скорости вращения вала с 10─24 об/мин от ротора до 1,5─3 тысяч об/мин на входе в генератор. Существуют также конструкции ветрогенераторов, где ротор напрямую подключается генератору;
  • Генератор. Он преобразует энергию вращения в электричество;
  • Флюгер и анемометр. Они находятся на задней стороне корпуса ветрогенератора. Их задача собирать данные о скорости и направлении ветра. Полученные данные используются для увеличения выработки электроэнергии. Эта информация используется системой управления для запуска и остановки турбины, а также для контроля во время ее работы. Этот механизм разворачивает роутер в направлении максимального ветра. Ветрогенератор начинает работать при скорости ветра около 4 метров в секунду и отключается, когда она возрастает больше 25 м/сек;
  • Башня. Она используется для установки ветрогенератора на высоте. Высота современных машин достигает 60─100 метров;
  • Трансформатор. Он предназначен для преобразования напряжения, требуемого для электрической сети. Как правило, он находится у основания башни или встроен в неё.


Виды ветровых электростанций

  • Прибрежные. Такие электростанции построены на небольшом расстоянии от береговой линии. Со стороны моря или океана на побережье идёт бриз. Он обусловлен неравномерным прогрева воды и суши. Днём ветер движется со стороны водоёма на берег, а ночью, наоборот, с побережья в сторону воды.
  • Наземные. Это наиболее распространённый вид ветровых электростанций, в которых ветрогенераторы установлены на различных возвышенностях. Причём строительство ветрогенератора на заранее подготовленные площадки занимает примерно 2 недели. Значительно большее время уходит на согласование строительство со стороны контролирующих органов. Строительство таких электростанций сильно удалённых районах затруднено, поскольку для их установки требуется тяжёлая подъёмная техника. А это значит, что требуется подъездные пути. К тому же электростанцию нужно подключить кабелем к электрическим сетям;
  • Шельфовые. Эти ветровые электростанции построены на расстоянии нескольких десятков километров от берега. Их плюсы заключаются в том, что они не занимают место на суше, их не слышно и их эффективность выше. Этот вид электростанций возводится в тех местах, где небольшая глубина. Их устанавливают на фундаменты, который изготавливают из свай забитых в морской грунт. Для передачи электроэнергии в электросети используются подводные кабели. Этот тип ветровых электростанций обходится дороже, чем наземный вариант. Для них требуется более мощные фундаменты, а морская вода часто приводит к ускоренной коррозии металлоконструкций. При строительстве этого вида электростанции применяют самоподъемные суда;
  • Парящие. Это редкий тип ветровых электростанций. Концепция в своё время была разработана советским инженером Егоровым (1930). Высота установки подобных ветрогенераторов составляет несколько сотен метров над землёй. Мощность подобных турбин составляет 30─40 киловатт. Для того чтобы поднять ветрогенератор на такую высоту, используется надувная невоспламеняемая оболочка, которую наполняют гелием. В качестве проводника получаемого электричества используются канаты повышенной прочности;
  • Плавающие. Плавающие ветровые генераторы появились относительно недавно. Конструктивно они представляют собой большие платформы с башней, уходящей под воду на несколько десятков метров. И примерно настолько же башня возвышается над водой. Чтобы стабилизировать на воде подобную систему, используется балласт из камней и гравия. Чтобы башня не дрейфовала, используются якоря. На берег электроэнергия передаётся с помощью подводного кабеля;
  • Горные. По большому счёту это те же самые наземные ветровые электростанции, но только построенные в горах. В горах ветер дует значительно интенсивнее. За счёт этого такие станции более эффективны.

Современные условия развития общества в целом и промышленной экономики в частности предполагают гигантские объемы потребления электроэнергии. Данный ресурс является частично возобновляемым и может вырабатываться при помощи целого ряда методов, технологий и принципов.

Основные типы электростанций по назначению

Промышленные

Тепловые электростанции

Тепловые электростанции – отличаются простотой технологического цикла, надежностью и аварийной безопасностью. Используют в качестве топлива, преимущественно, уголь, мазут, торф и природный газ. К преимуществам таких станций стоит отнести простоту переоборудования или модернизации, перехода на другой вид топлива. К минусам можно смело отнести высокую себестоимость тепловой электроэнергии и существенное загрязнение атмосферы, так как ТЭЦ вырабатывают энергию по принципу сжигания топлива.

Атомные электростанции

Атомные электростанции – наиболее противоречивый источник энергии, использующий для генерации электроэнергии атомную реакцию. В безаварийном режиме данный вид станций является наиболее предпочтительным, однако аварии несут за собой катастрофические последствия. Среди преимуществ невысокая стоимость энергии и огромная мощность электростанций. Большинство недостатков связаны с безопасностью и сложностью утилизацией ядерных отходов, а также консервацией отработавших свой ресурс блоков.

Гидроэлектростанции

Гидроэлектростанции – используют для генерации электроэнергии природную силу движения воды. До появления атомной энергетики именно ГЭС были основой процесса электрификации. Преимущества гидроэлектростанций неоспоримы и включают: самую малую стоимость энергии, относительно высокую безопасность и безвредность для окружающей среды, а также высокую мощность. Однако существуют и недостатки: число мест, подходящих для постройки станции, весьма ограничено и существенно меняется экосистема водоема в районе станции.

Полупромышленные и для бытовых нужд

Стационарные дизельгенераторы

Стационарные дизельгенераторы – автономные электростанции, предназначенные для длительной эксплуатации на одном объекте, поскольку процесс монтажа-демонтажа требует времени и участия специалистов. Могут запитывать объекты различного масштаба – от небольших стройплощадок до крупных промышленных предприятий. Абсолютно не зависят от центральных электросетей и способны работать с ними в параллельном или дублирующем режиме.

Передвижные дизельгенраторы – станция монтируется на мобильном шасси и может оперативно перемещаться на любые расстояния между различными объектами. Весь процесс монтажа-демонтажа на объекте сводится к физическому подключению установки к энергосети.

Дизельгенераторы в контейнере – наиболее надежный и защищенный вариант исполнения автономной электростанции. В данном случае ДГУ помещается в большой контейнер, создающий все необходимые условия для эффективной работы в самых суровых климатических условиях. Обеспечивается защита от механических повреждений, сверхнизких и высоких температур, осадков, достигаются высокие показатели звукоизоляции.

Электростанции в кожухе

Дизельная электростанция в кожухе – средний вариант между открытым и контейнерным исполнением. В данном случае все важные элементы станции закрываются в конструкции шумопоглощающего кожуха. Такая ДГУ может устанавливаться вне специально подготовленных помещений – на открытым воздухе. Желательно лишь установить над станцией навес, защищающий от осадков.

Открытые электростанции – поставляются без защитных конструкций и приспособлений, что выдвигает особые требования к размещению. Для эффективной и бесперебойной работы такой установки ее необходимо размещать в специально подготовленном помещении определенной площади, с наличием хорошей системы вентиляции и отвода выхлопных газов.

Каждый тип вышеперечисленных электростанций оптимален для применения в отдельно взятых, индивидуальных условиях и поэтому еще долго будет безальтернативным. Различные категории пользователей ценят в большей степени свои особенности: стоимость, надежность, безопасность, мобильность, автономность или экологичность.

Полный набор этих качеств не свойственен ни одному из типов и поэтому все они продолжают обслуживать свои группы потребителей.

Запросить консультацию

Нужна консультация отдела продаж или инженера для расчета проекта - звоните.

3.4. РАННИЕ ЭЛЕКТРОСТАНЦИИ

Электростанции, под которыми понимают фабрики по производству электрической энергии, подлежащей распределению между различными производителями, появились не сразу. В 70-х и начале 80-х годов XIX в. место производства электроэнергии не было отделено от места потребления.

Электрические станции, обеспечивавшие электроэнергией ограниченное количество потребителей, назывались блок-станциями (не путать с современным понятием блок-станций, под которым некоторые авторы понимают фабрично-заводские теплоэлектроцентрали). Такие станции иногда называли «домовыми».

Развитие первых электростанций было сопряжено с преодолением трудностей не только научно-технического характера. Так, городские власти запрещали сооружение воздушных линий, не желая портить внешний вид города. Конкурирующие газовые компании всячески подчеркивали действительные и мнимые недостатки нового вида освещения.

На блок-станциях в качестве первичных двигателей применялись в основном поршневые паровые машины и в отдельных случаях двигатели внутреннего сгорания (в то время являвшиеся новинкой), широко использовались локомобили. От первичного двигателя к электрическому генератору делалась ременная передача. Обычно один паровой двигатель приводил в действие один-три генератора; поэтому на крупных блок-станциях устанавливались несколько паровых машин или локомобилей. Для регулировки натяжения ремней электрические генераторы монтировались на салазках. На рис. 3.7 показан вид электростанции для освещения одного дома.

Впервые блок-станции были построены в Париже для освещения улицы Оперы. В России первой установкой такого рода явилась станция для освещения Литейного моста в Петербурге, созданная в 1879 г. при участии П.Н. Яблочкова.

Рис. 3.7. Блок-станция - электростанция с двумя генераторами (внизу справа) и локомобилем (слева) для освещения одного дома

Однако идея централизованного производства электроэнергии была настолько экономически оправданной и настолько соответствовала тенденции концентрации промышленного производства, что первые центральные электростанции возникли уже в середине 80-х годов XIX в. и быстро вытеснили блок-станции. В связи с тем что в начале 80-х годов массовыми потребителями электроэнергии могли стать только источники света, первые центральные электростанции проектировались, как правило, для питания осветительной нагрузки и вырабатывали постоянный ток.

В 1881 г. несколько предприимчивых американских финансистов под впечатлением успеха, которым сопровождалась демонстрация ламп накаливания, заключили соглашение с Т.А. Эдисоном и приступили к сооружению первой в мире центральной электростанции (на Пирльстрит в Нью-Йорке). В сентябре 1882 г. эта электростанция была сдана в эксплуатацию. В машинном зале станции было установлено шесть генераторов Т.А. Эдисона, мощность каждого составляла около 90 кВт, а общая мощность электростанции превышала 500 кВт. Здание станции и ее оборудование были спроектированы весьма целесообразно, так что в дальнейшем при строительстве новых электростанций развивались многие из тех принципов, которые были предложены Т.А. Эдисоном. Так, генераторы станций имели искусственное охлаждение и соединялись непосредственно с двигателем. Напряжение регулировалось автоматически. На станции осуществлялись механическая подача топлива в котельную и автоматическое удаление золы и шлака. Защита оборудования от токов короткого замыкания осуществлялась плавкими предохранителями, а магистральные линии были кабельными. Станция снабжала электроэнергией обширный по тому времени район площадью 2,5 км.

Вскоре в Нью-Йорке было построено еще несколько станций. В 1887 г. работали уже 57 центральных электростанций системы Т.А. Эдисона.

Исходное напряжение первых электростанций, от которого впоследствии были произведены другие, образующие известную шкалу напряжений, сложилось исторически. Дело в том, что в период исключительного распространения дугового электрического освещения эмпирически было установлено, что наиболее подходящим для горения дуги является напряжение 45 В. Чтобы уменьшить токи короткого замыкания, которые возникали в момент зажигания ламп (при соприкосновении углей), и для более устойчивого горения дуги включали последовательно с дуговой лампой балластный резистор.

Также эмпирически было найдено, что сопротивление балластного резистора должно быть таким, чтобы падение напряжения на нем при нормальной работе составляло примерно 20 В. Таким образом, общее напряжение в установках постоянного тока сначала составляло 65 В, и это напряжение применялось долгое время. Однако часто в одну цепь включали две другие лампы, для работы которых требовалось 2x45 = 90 В, а если к этому напряжению прибавить еще 20 В, приходящиеся на сопротивление балластного резистора, то получится напряжение 110 В. Это напряжение почти повсеместно было принято в качестве стандартного.

Уже при проектировании первых центральных электростанций столкнулись с трудностями, которые в достаточной степени не были преодолены в течение всего периода господства техники постоянного тока. Радиус электроснабжения определяется допустимыми потерями напряжения в электрической сети, которые для данной сети тем меньше, чем выше напряжение. Именно это обстоятельство заставило строить электростанции в центральных районах города, что существенно затрудняло не только обеспечение водой и топливом, но и удорожало стоимость земельных участков для строительства электростанций, так как земля в центре города была чрезвычайно дорога. Этим, в частности, и объясняется необычный вид нью-йоркских электростанций, на которых оборудование располагалось на многих этажах. Положение осложнялось еще тем, что на первых электростанциях приходилось размещать большое количество котлов, паропроизводительность которых не соответствовала новым требованиям, предъявленным электроэнергетикой.

Не менее удивился бы наш современник, увидев первые петербургские электростанции, которые обслуживали район Невского проспекта. В начале 80-х годов XIX в. они размещались на баржах, закрепленных у причалов на реках Мойке и Фонтанке (рис. 3.8). Строители исходили из соображений дешевого водоснабжения, кроме того, при таком решении не нужно было покупать земельные участки, близкие к потребителю.

В 1886 г. в Петербурге было учреждено акционерное «Общество электрического освещения 1886 г.»: (сокращенно называлось «Общество 1886 г.»), которое приобрело электростанции на реках Мойке и Фонтанке и построило еще две: у Казанского собора и на Инженерной площади. Мощность каждой из этих электростанций едва превышала 200 кВт.

Рис. 3.8. Электростанция на р. Фонтанке в Петербурге

В Москве первая центральная электростанция (Георгиевская) была построена в 1886 г. тоже в центре города, на углу Большой Дмитровки и Георгиевского переулка. Ее энергия использовалась для освещения прилегающего района. Мощность электростанции составляла 400 кВт.

Ограниченные возможности расширения радиуса электроснабжения привели к тому, что удовлетворить спрос на электроэнергию со временем становилось все труднее. Так, в Петербурге и Москве к середине 90-х годов возможности присоединения новой нагрузки к существующим электростанциям были исчерпаны и встал вопрос об изменении схем сети или даже об изменении рода тока.

Рост потребностей в электроэнергии эффективно стимулировал повышение производительности и экономичности тепловой части электрических станций. Прежде всего следует отметить решительный поворот от поршневых паровых машин к паровым турбинам. Первая турбина на электростанциях России была установлена в 1891 г. в Петербурге (станция на р. Фонтанке). За год до этого испытание турбины было проведено на станции, расположенной на р. Мойке. Выше уже отмечался наиболее существенный недостаток электроснабжения постоянным током - слишком малая площадь района, которая может обслуживаться центральной электростанцией. Удаленность нагрузки не превышала нескольких сотен метров. Электростанции стремились расширить круг потребителей своего товара - электроэнергии. Этим объясняются настойчивые поиски путей увеличения площади электроснабжения при условии сохранения уже построенных станций постоянного тока. Было предложено несколько идей, как увеличить радиус распределения энергии.

Первая идея, не получившая заметного распространения, касалась понижения напряжения электрических ламп, подключавшихся в конце линии. Однако расчеты показали, что при протяженности сети более 1,5 км экономически выгоднее было построить новую электростанцию.

Другое решение, которое могло во многих случаях удовлетворить потребность, состояло в изменении схемы сети: переходе от двухпроводных сетей к многопроводным, т.е. фактически к повышению напряжения

Трехпроводная система распределения электроэнергии была предложена в 1882 г. Дж. Гопкинсоном и независимо от него Т. Эдисоном. При этой системе генераторы на электростанции соединялись последовательно и от общей точки шел нейтральный, или компенсационный провод. При этом обычные лампы сохранялись. Они включались, как правило, между рабочими и нейтральным проводами, а двигатели для сохранения симметрии нагрузки можно было включать на повышенное напряжение (220 В).

Практическими результатами введения трехпроводной системы явилось, во-первых, увеличение радиуса электроснабжения примерно до 1200 м, во-вторых, относительная экономия меди (при всех прочих одинаковых условиях расход меди при трехпроводной системе был практически вдвое меньше, чем при двухпроводной).

Для регулирования напряжения в ветвях трехпроводной сети применялись различные устройства: регулировочные дополнительные генераторы, делители напряжения, в частности получившие значительное распространение делители напряжения Михаила Осиповича Доливо-Добровольского, аккумуляторные батареи. Трехпроводная система широко применялась как в России, так и за рубежом. Она сохранилась вплоть до 20-х годов XX в., а в отдельных случаях применялась и позднее.

Максимальный вариант многопроводных систем пятипроводная сеть постоянного тока, в которой применялись четыре последовательно включенных генератора и напряжение, увеличивалось вчетверо. Радиус электроснабжения возрастал всего до 1500 м. Однако эта система не получила широкого применения.

Третий путь увеличения радиуса электроснабжения предполагал сооружение аккумуляторных подстанций. Аккумуляторные батареи были в то время обязательным дополнением каждой электростанции. Они покрывали пики нагрузок. Заряжаясь в дневные и поздние ночные часы, они служили резервом.

Сети с аккумуляторными подстанциями получили некоторое распространение. В Москве, например, в 1892 г. была построена аккумуляторная подстанция в Верхних торговых рядах (ныне ГУМ), находившаяся на расстоянии 1385 м от Георгиевской центральной станции. На этой подстанции были установлены аккумуляторы, питавшие около 2000 ламп накаливания.

В последние два десятилетия XIX в. было построено много электростанций постоянного тока, и они долгое время давали значительную долю общей выработки электроэнергии. Мощность таких электростанций редко превышала 500 кВт, агрегаты обычно имели мощность до 100 кВт.

Все возможности увеличения радиуса электроснабжения при постоянном токе довольно быстро были исчерпаны, особенно в крупных городах.

В 80-х годах XIX в. начинают сооружаться электростанции переменного тока, выгодность которых для увеличения радиуса электроснабжения была бесспорной. Если не считать блок-станций переменного тока, построенных в Англии в 1882–1883 гг., то, по-видимому, первой постоянно действовавшей электростанцией переменного тока можно считать электростанцию Гровнерской галереи (Лондон). На этой станции, пущенной в эксплуатацию в 1884 г., были установлены два генератора переменного тока В. Сименса, которые через последовательно включенные трансформаторы Дж.Д. Голяра и Л. Гиббса работали на освещение галереи. Недостатки последовательного включения трансформаторов и, в частности, трудности поддержания постоянства тока были выявлены довольно быстро, и в 1886 г. эта станция была реконструирована по проекту С.Ц. Ферранти. Генераторы В. Сименса были заменены машинами конструкции С.Ц. Ферранти мощностью 1000 кВт каждая с напряжением на зажимах 2,5 кВ. Трансформаторы, изготовленные по проекту С.Ц. Ферранти, включались в цепь параллельно и служили для снижения напряжения в непосредственной близости от потребителей.

В 1889–1890 гг. С.Ц. Ферранти вновь вернулся к проблеме электроснабжения Лондона с целью обеспечения электроэнергией района лондонского Сити. В связи с высокой стоимостью земельного участка в центре города было решено построить электростанцию в одном из предместий Лондона, в Дептфорде, находящемся в 12 км от Сити. Очевидно, на таком большом расстоянии от места потребления электроэнергии электростанция должна была вырабатывать переменный ток. При сооружении этой установки были применены мощные по тому времени генераторы высокого напряжения (10 кВ) мощностью по 1000 л.с. Общая мощность Дептфордской электростанции составляла около 3000 кВт. На четырех городских подстанциях, питавшихся по четырем магистральным кабельным линиям, напряжение понижалось до 2400 В, а затем уже у потребителей (в домах) - до 100 В.

Примером крупной гидростанции, питавшей осветительную нагрузку в однофазной цепи, может служить станция, построенная в 1889 г. на водопаде вблизи г. Портленда (США). На этой станции гидравлические двигатели приводили в действие восемь однофазных генераторов общей мощностью 720 кВт. Кроме того, на электростанции были установлены 11 генераторов, предназначенных специально для питания дуговых ламп (по 100 ламп на каждый генератор). Энергия этой станции передавалась на расстояние 14 миль в г. Портленд.

Характерная особенность первых электростанций переменного тока - изолированная работа отдельных машин. Синхронизация генераторов еще не производилась, и от каждой машины шла отдельная цепь к потребителям. Легко понять, насколько неэкономичными при таких условиях оказались электрические сети, на сооружение которых расходовались колоссальные количества меди и изоляторов.

В России крупнейшие станции переменного тока были сооружены в конце 80-х и начале 90-х годов XIX в. Первая центральная электростанция построена венгерской фирмой «Ганц и К?» в г. Одессе в 1887 г. Основным потребителем энергии была однофазная система электрического освещения нового театра. Эта электростанция представляла собой для своего времени прогрессивное сооружение. Она имела четыре водотрубных котла общей производительностью 5 т пара в час, а также два синхронных генератора общей мощностью 160 кВт при напряжении на зажимах 2 кВ и частоте 50 Гц. От распределительного щита энергия поступала в линию длиной 2,5 км, ведущую к трансформаторной подстанции театра, где напряжение понижалось до 65 В (на которое были рассчитаны лампы накаливания). Оборудование электростанции было столь совершенным для своего времени, что, несмотря на то что топливом служил привозной английский уголь, стоимость электроэнергии была ниже, чем на более поздних петербургских и московских электростанциях. Расход топлива составлял 3,4 кг/(кВт?ч) [на петербургских электростанциях 3,9–5,4 кг/(кВт?ч)].

В том же году началась эксплуатация электростанции постоянного тока в Царском Селе (ныне г. Пушкин). Протяженность воздушной сети в Царском Селе уже в 1887 г. была около 64 км, тогда как два года спустя суммарная кабельная сеть «Общества 1886 г.» в Москве и Петербурге, составляла только 115 км. В 1890 г. Царскосельская электростанция и сеть были реконструированы и переведены на однофазную систему переменного тока напряжением 2 кВ. По свидетельству современников, Царское Село было первым городом в Европе, который был освещен исключительно электричеством.

Крупнейшей в России электростанцией для снабжения однофазной системы переменного тока была станция на Васильевском острове в Петербурге, построенная в 1894 г. инженером Н.В. Смирновым. Мощность ее составляла 800 кВт и превосходила мощность любой существовавшей в то время станции постоянного тока. В качестве первичных двигателей использовались четыре вертикальные паровые машины мощностью 250 л.с. каждая. Применение переменного напряжения 2000 В позволило упростить и удешевить электрическую сеть и увеличить радиус электроснабжения (более 2 км при потере до 3% напряжения в магистральных проводах вместо 17–20% в сетях постоянного тока). Таким образом, опыт эксплуатации центральных станций и однофазных сетей показал преимущества переменного тока, но вместе с тем, как уже отмечалось, выявил ограниченность его применения. Однофазная система тормозила развитие электропривода, усложняла его. Так, например, при подключении силовой нагрузки к сети Дептфордской станции приходилось дополнительно помещать на валу каждого синхронного однофазного двигателя еще разгонный коллекторный двигатель переменного тока. Легко понять, что такое усложнение электропривода делало весьма сомнительной возможность его широкого применения.

Данный текст является ознакомительным фрагментом.

Из книги автора

12. АРИЗ Ранние алгоритмы (разбор примеров) Кудрявцев А. В. АРИЗ - один из основных инструментов теории решения изобретательских задач. С 1961 г. он прошел большой путь развития, превратился из простого и короткого списка инструкций в развернутый, детализированный метод

Из книги автора

5.7.2. ПЕРЕДВИЖНЫЕ ЭЛЕКТРОСТАНЦИИ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ Развитие электроэнергетики в полевых частях сухопутных войск в значительной мере определялось основополагающим требованием мобильности. Первая русская передвижная электростанция была создана в 1913 г. для

  • Читать книгу целиком на Litres
  • 4.11. ЭЛЕКТРОМАГНИТНЫЕ ПРОЦЕССЫ В ВЕЩЕСТВЕННЫХ СРЕДАХ
  • 4.12. ДИНАМИКА СВОБОДНЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ И ТЕЛ В ЭМП
  • 4.13. ПРЕОБРАЗОВАНИЕ И ГЕНЕРАЦИЯ ЭМП В ТЕХНОЛОГИЧЕСКИХ ЦЕЛЯХ
  • 4.14. ВЛИЯНИЕ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ НА РАЗВИТИЕ ТЭ
  • 4.15. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ
  • 4.16. ПЕРСПЕКТИВЫ РАЗВИТИЯ ТЭ
  • 5.1. ЭЛЕКТРОЭНЕРГЕТИКА В КОНЦЕ XIX И В XX ВЕКЕ
  • 5.1.1. ПЕРВАЯ ТРЕХФАЗНАЯ ЛИНИЯ ЭЛЕКТРОПЕРЕДАЧИ
  • 5.1.2. ВОЗНИКНОВЕНИЕ РАЙОННЫХ ЭЛЕКТРОСТАНЦИЙ И ЭНЕРГЕТИЧЕСКИХ СИСТЕМ
  • 5.1.3. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ЭЛЕКТРОЭНЕРГЕТИКИ В НАШЕЙ СТРАНЕ
  • 5.1.4. ИНТЕГРАЦИОННЫЕ ПРОЦЕССЫ В МИРОВОЙ ЭЛЕКТРОЭНЕРГЕТИКЕ
  • 5.2. ЭЛЕКТРИЧЕСКАЯ ЧАСТЬ ЭЛЕКТРОСТАНЦИЙ
  • 5.3.1. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ
  • 5.3.2. СОЗДАНИЕ ЭЛЕКТРОПЕРЕДАЧ СВН И УВН - ВЫДАЮЩЕЕСЯ ДОСТИЖЕНИЕ РОССИЙСКИХ ЭЛЕКТРОЭНЕРГЕТИКОВ
  • 5.3.3. ЭЛЕКТРОПЕРЕДАЧИ ПОСТОЯННОГО ТОКА
  • 5.3.4. РАСПРЕДЕЛИТЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СЕТИ
  • 5.3.5. ПОТЕРИ И КАЧЕСТВО ЭЛЕКТРОЭНЕРГИИ
  • 5.4.1. ПЕРЕНАПРЯЖЕНИЯ И ИХ ОГРАНИЧЕНИЕ
  • 5.4.2. РАЗВИТИЕ МЕТОДОВ И АППАРАТУРЫ ДЛЯ ЗАЩИТЫ ОТ ПЕРЕНАПРЯЖЕНИЙ
  • 5.4.3. КООРДИНАЦИЯ ИЗОЛЯЦИИ И МЕТОДЫ ЕЕ ИСПЫТАНИЙ
  • 5.4.4. ИСТОЧНИКИ НАПРЯЖЕНИЙ И ТОКОВ ДЛЯ ИСПЫТАНИЙ ЭЛЕКТРООБОРУДОВАНИЯ
  • 5.5.1. РЕЛЕЙНАЯ ЗАЩИТА
  • 5.5.2. ПРОТИВОАВАРИЙНАЯ АВТОМАТИКА
  • 5.5.3. АВТОМАТИКА УПРАВЛЕНИЯ
  • 5.5.4. АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ И КОМПЛЕКСЫ ПРОТИВОАВАРИЙНОГО УПРАВЛЕНИЯ
  • 5.6.1. ФОРМИРОВАНИЕ РЫНОЧНЫХ ОТНОШЕНИЙ В РОССИЙСКОЙ ЭЛЕКТРОЭНЕРГЕТИКЕ
  • 5.6.2. АВТОМАТИЗИРОВАННАЯ СИСТЕМА ДИСПЕТЧЕРСКОГО УПРАВЛЕНИЯ ЕЭС РОССИИ
  • 5.6.3. ЧЕЛОВЕКО-МАШИННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ СОВРЕМЕННЫМИ ЭЭС
  • 5.7. ЭЛЕКТРОТЕХНИКА В ВОЕННОМ ДЕЛЕ
  • 5.7.7. ИСТОЧНИКИ ЭЛЕКТРОЭНЕРГИИ, ЭЛЕКТРИЧЕСКИЕ СЕТИ И ФОРМИРОВАНИЕ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ ВОЕННОГО НАЗНАЧЕНИЯ
  • 5.7.2. ПЕРЕДВИЖНЫЕ ЭЛЕКТРОСТАНЦИИ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ
  • 5.7.3. СОВРЕМЕННЫЙ ЭТАП ЭЛЕКТРОСНАБЖЕНИЯ ВОЕННЫХ ОБЪЕКТОВ
  • 5.7.4. ЭЛЕКТРИФИКАЦИЯ ОСНОВНЫХ МЕХАНИЗМОВ ВОЕННОЙ ТЕХНИКИ
  • 5.7.5. ЭЛЕКТРООСВЕТИТЕЛЬНЫЕ УСТРОЙСТВА ДЛЯ ВОЕННЫХ ЦЕЛЕЙ
  • 6.1. ЭЛЕКТРОМЕХАНИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ
  • 6.2. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ДЛЯ ЭЛЕКТРОЭНЕРГЕТИКИ И ОБЩЕГО НАЗНАЧЕНИЯ
  • 6.2.1. ОБЩИЕ СВЕДЕНИЯ
  • 6.2.2. МАШИНЫ ПОСТОЯННОГО ТОКА ЕДИНЫХ СЕРИЙ
  • 6.2.3. ТЯГОВЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА
  • 6.2.4. КРУПНЫЕ МАШИНЫ ПОСТОЯННОГО ТОКА
  • 6.2.5. ТИРИСТОРНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА
  • 6.2.6. ТУРБОГЕНЕРАТОРЫ
  • 6.2.7. ГИДРОГЕНЕРАТОРЫ
  • 6.2.8. СИНХРОННЫЕ КОМПЕНСАТОРЫ
  • 6.2.9. КРУПНЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА (КЭМ)
  • 6.2.10. ВЕНТИЛЬНЫЕ ЭЛЕКТРОДВИГАТЕЛИ
  • 6.2.11. СИСТЕМЫ ВОЗБУЖДЕНИЯ И АВТОМАТИЧЕСКИЕ РЕГУЛЯТОРЫ ВОЗБУЖДЕНИЯ
  • 6.2.12. АСИНХРОННЫЕ ДВИГАТЕЛИ
  • 6.2.13. ИЗОЛЯЦИЯ ОБМОТОК ЭЛЕКТРИЧЕСКИХ МАШИН
  • 6.2.14. МЕТАЛЛОВЕДЕНИЕ ВТ КРУПНОМ ЭЛЕКТРОМАШИНОСТРОЕНИИ
  • 6.4.1. ОБЩИЕ СВЕДЕНИЯ
  • 6.4.2. АППАРАТЫ ВЫСОКОГО НАПРЯЖЕНИЯ
  • 6.4.3. АППАРАТЫ УПРАВЛЕНИЯ, РЕГУЛИРОВАНИЯ И АВТОМАТИКИ
  • 6.5. ТРАНСФОРМАТОРЫ
  • 6.6. ЭЛЕКТРИЧЕСКИЙ ПРИВОД
  • 6.6.1. РАННИЙ ПЕРИОД РАЗВИТИЯ ЭЛЕКТРОПРИВОДА
  • 6.6.2. ПЕРЕХОД ОТ ГРУППОВОГО ПРОМЫШЛЕННОГО ЭЛЕКТРОПРИВОДА К ИНДИВИДУАЛЬНОМУ
  • 6.6.3. РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД - ПОИСК РЕШЕНИЙ
  • 6.6.4. ИНДИВИДУАЛЬНЫЙ ЭЛЕКТРОПРИВОД В ТЕХНОЛОГИЧЕСКИХ УСТАНОВКАХ
  • 6.6.5. АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ В ЭЛЕКТРОПРИВОДЕ
  • 6.6.6. ЭЛЕКТРОПРИВОДЫ СО СТАТИЧЕСКИМИ ПРЕОБРАЗОВАТЕЛЯМИ. ЗАВЕРШЕНИЕ РАЗВИТИЯ «ДОПОЛУПРОВОДНИКОВОГО» ЭЛЕКТРОПРИВОДА
  • 6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ - ДВИГАТЕЛЬ (ТП - Д) И ИСТОЧНИК ТОКА - ДВИГАТЕЛЬ (ИТ - Д)
  • 6.6.8. РАЗВИТИЕ АСИНХРОННОГО И ДИСКРЕТНОГО ЭЛЕКТРОПРИВОДОВ
  • 6.6.9. СИСТЕМЫ ПОДЧИНЕННОГО РЕГУЛИРОВАНИЯ
  • 6.6.10. МИКРОПРОЦЕССОРЫ В ЭЛЕКТРОПРИВОДЕ
  • Глава 7. ЭЛЕКТРОТЕХНОЛОГИЯ
  • ВВЕДЕНИЕ
  • 7.1.1. РЕЗИСТИВНЫЙ НАГРЕВ
  • 7.1.2. ЭЛЕКТРОДУГОВОЙ НАГРЕВ
  • 7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ
  • 7.7.5. ПЛАЗМЕННЫЙ НАГРЕВ
  • 7.1.6. ЭЛЕКТРОННО-ЛУЧЕВОЙ НАГРЕВ
  • 7.1.7. ЛАЗЕРНЫЙ НАГРЕВ
  • 7.2. ЭЛЕКТРИЧЕСКАЯ СВАРКА
  • 7.2.1. ЭЛЕКТРИЧЕСКАЯ ДУГОВАЯ СВАРКА
  • 7.2.2. СВАРКА ЗА СЧЕТ РЕЗИСТИВНОГО НАГРЕВА
  • 7.2.3. ПРОЧИЕ ВИДЫ ЭЛЕКТРОСВАРКИ
  • 7.3. ЭЛЕКТРОФИЗИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
  • 7.3.1. ЭЛЕКТРОЭРОЗИОННАЯ ОБРАБОТКА
  • 7.3.2. ЭЛЕКТРОИМПУЛЬСНАЯ ОБРАБОТКА ДАВЛЕНИЕМ
  • 7.3.3. ПРОЧИЕ МЕТОДЫ ЭЛЕКТРОФИЗИЧЕСКОЙ ОБРАБОТКИ
  • 7.4. ЭЛЕКТРОХИМИЧЕСКАЯ ТЕХНОЛОГИЯ
  • 7.4.1. ЗАРОЖДЕНИЕ И РАЗВИТИЕ ЭЛЕКТРОХИМИЧЕСКОЙ ТЕХНОЛОГИИ
  • 7.4.2. ЭЛЕКТРОЛИТИЧЕСКОЕ РАЗЛОЖЕНИЕ (ЭЛЕКТРОЛИЗ) ВОДЫ
  • 7.4.3. ПОЛУЧЕНИЕ ХЛОРА И ЩЕЛОЧИ
  • 7.4.4. ЭЛЕКТРОХИМИЧЕСКОЕ ПОЛУЧЕНИЕ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ
  • 7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ
  • 7.4.6. ГАЛЬВАНОТЕХНИКА
  • 7.4.7. АНОДНАЯ ОБРАБОТКА МЕТАЛЛОВ
  • 8.1.1. ЖЕЛЕЗНОДОРОЖНЫЙ ТРАНСПОРТ
  • 8.1.2. ГОРОДСКОЙ ЭЛЕКТРИЧЕСКИЙ ТРАНСПОРТ
  • 8.1.3. ПОДЪЕМНО-ТРАНСПОРТНОЕ ОБОРУДОВАНИЕ
  • 8.2.1. ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ
  • 8.2.2. ГРЕБНЫЕ ЭЛЕКТРИЧЕСКИЕ УСТАНОВКИ (СИСТЕМЫ ЭЛЕКТРОДВИЖЕНИЯ)
  • 8.2.3. ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ
  • 8.3. АВТОТРАКТОРНОЕ ЭЛЕКТРИЧЕСКОЕ И ЭЛЕКТРОННОЕ ОБОРУДОВАНИЕ
  • 8.3.1. СИСТЕМЫ ЗАЖИГАНИЯ
  • 8.3.2. СИСТЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ
  • 8.3.3. СИСТЕМЫ ПУСКА
  • 8.3.4. СИСТЕМЫ ОСВЕЩЕНИЯ И СВЕТОВОЙ СИГНАЛИЗАЦИИ
  • 8.3.5. КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
  • 8.3.6. ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ И КОММУТАЦИОННАЯ АППАРАТУРА
  • 8.3.7. ЭЛЕКТРОННОЕ ОБОРУДОВАНИЕ
  • 8.3.8. ТЯГОВЫЕ ЭЛЕКРОПРИВОДЫ БОЛЬШЕГРУЗНЫХ КАРЬЕРНЫХ АВТОСАМОСВАЛОВ БЕЛАЗ
  • 8.4.1. АВИАЦИОННОЕ ЭЛЕКТРООБОРУДОВАНИЕ
  • 8.4.2. ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ КОСМИЧЕСКИХ АППАРАТОВ (КА)
  • Глава 9. СВЕТОТЕХНИКА
  • 9.1. ВВЕДЕНИЕ
  • 9.3. ПРИБОРЫ ДЛЯ ПЕРЕРАСПРЕДЕЛЕНИЯ ЭНЕРГИИ ИЗЛУЧЕНИЯ В ПРОСТРАНСТВЕ
  • 9.4. СВЕТОТЕХНИЧЕСКИЕ УСТАНОВКИ
  • Глава 10. ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
  • 10.1. ОБЩИЕ СВЕДЕНИЯ
  • 10.2. ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ
  • 10.3. КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ
  • 10.4. МАГНИТНЫЕ МАТЕРИАЛЫ В ЭЛЕКТРОПРОМЫШЛЕННОСТИ
  • 10.4.1. МАГНИТОМЯГКИЕ МАТЕРИАЛЫ
  • 10.4.2. АМОРФНЫЕ МАГНИТОМЯГКИЕ МАТЕРИАЛЫ (АММ)
  • 10.4.3. ФЕРРИМАГНИТНЫЕ МАТЕРИАЛЫ
  • 10.4.4. МАГНИТОТВЕРДЫЕ МАТЕРИАЛЫ
  • 10.5. КАБЕЛЬНЫЕ ИЗДЕЛИЯ
  • Глава 11. ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА
  • 11.1. ОБЩИЕ ПОЛОЖЕНИЯ
  • 11.2. СИЛОВАЯ (ЭНЕРГЕТИЧЕСКАЯ) ЭЛЕКТРОНИКА
  • 11.2.1. ПЕРВЫЕ РТУТНЫЕ ВЫПРЯМИТЕЛИ
  • 11.2.2. УПРАВЛЯЕМЫЕ РТУТНЫЕ ПРЕОБРАЗОВАТЕЛИ
  • 11.2.3. УСИЛИТЕЛЬНЫЕ ГЕНЕРАТОРНЫЕ ЛАМПЫ
  • 11.2.4. СИЛОВЫЕ ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ
  • 11.2.5. ПРЕОБРАЗОВАТЕЛИ ЛИНИЙ ПЕРЕДАЧИ ПОСТОЯННОГО ТОКА
  • 11.2.6. РАЗВИТИЕ И ПЕРСПЕКТИВЫ СИЛОВОЙ ЭЛЕКТРОНИКИ
  • 11.3. ТЕХНОЛОГИЧЕСКАЯ ЭЛЕКТРОНИКА
  • 11.3.1. ИСТОЧНИКИ ЭЛЕКТРОННЫХ И ИОННЫХ ПОТОКОВ
  • 11.3.2. ЛАЗЕРНЫЕ ИСТОЧНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ
  • 11.3.3. ИСТОЧНИКИ СВЧ-ИЗЛУЧЕНИЙ
  • 11.3.4. МОЩНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ИНДУКЦИОННОГО НАГРЕВА
  • 11.4. ИНФОРМАЦИОННАЯ ЭЛЕКТРОНИКА
  • 11.4.1. ЭТАПЫ РАЗВИТИЯ
  • 11.4.2. УСИЛИТЕЛИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ
  • 11.4.3. ИМПУЛЬСНЫЕ УСТРОЙСТВА
  • 11.4.4. РАЗВИТИЕ ПОЛУПРОВОДНИКОВОЙ ИНФОРМАЦИОННОЙ ТЕХНИКИ
  • 11.4.5. ИНТЕГРАЛЬНЫЕ ЛОГИЧЕСКИЕ И АНАЛОГОВЫЕ МИКРОСХЕМЫ
  • 11.4.6. ЭЛЕКТРОННЫЕ АВТОМАТЫ С ПАМЯТЬЮ
  • 11.4.7. МИКРОПРОЦЕССОРЫ И МИКРОКОНТРОЛЛЕРЫ
  • Глава 12. ЭЛЕКТРОИЗМЕРИТЕЛЬНАЯ ТЕХНИКА
  • 12.1. ВВЕДЕНИЕ
  • 12.3. АНАЛОГОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ
  • 12.4. ЦИФРОВЫЕ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ
  • 12.5. ТЕНДЕНЦИИ РАЗВИТИЯ ЭЛЕКТРОИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ
  • 13.1. КРАТКИЕ СВЕДЕНИЯ О РОССИЙСКИХ И ЗАРУБЕЖНЫХ УЧЕНЫХ, ВНЕСШИХ ЗНАЧИТЕЛЬНЫЙ ВКЛАД В РАЗВИТИЕ ЭЛЕКТРОТЕХНИКИ
  • 13.2.1. Академики РАН
  • 13.2.2. ЧЛЕНЫ-КОРРЕСПОНДЕНТЫ РАН
  • 13.3. ПОЧЕТНЫЕ АКАДЕМИКИ, ДЕЙСТВИТЕЛЬНЫЕ ЧЛЕНЫ И ЧЛЕНЫ-КОРРЕСПОНДЕНТЫ АЭН РФ
  • 13.3.1. ПОЧЕТНЫЕ АКАДЕМИКИ АЭН РФ
  • 13.3.2. ДЕЙСТВИТЕЛЬНЫЕ ЧЛЕНЫ АЭН РФ
  • 13.3.3. ЧЛЕНЫ-КОРРЕСПОНДЕНТЫ АЭН РФ
  • 13.4. КОЛЛЕКТИВНЫЕ ЧЛЕНЫ АЭН РФ


Областные власти вознамерились в ближайшие три года возвести на Среднем Урале 60 новых электростанций. А может и больше. Правда, сами эти станции будут ну совсем маленькие. Некоторые по мегаватту (1 МВт), а какие-то даже меньше – по 200 киловатт (200 кВт). Суммарная мощность всех их вряд ли превысит 200 МВт… В общем, область решила развивать мини- и микроэнергетику.
Интерес властей к малой генерации понятен. Урал уже фактически стал энергодефицитным регионом. И сегодня поздно кидаться строить новые энергоблоки стандартного размера (от 1000 МВт). Пока парочка таких завертится – экономика региона уже придет в негодность. Остается надеяться только на энергосбережение и малую генерацию, которую можно вводить в строй гораздо быстрее. Поэтому несколько дней назад губернатор подписал постановление №313, согласно которому, бюджет области будет ежегодно выделять по 50 млн. руб. кредитов муниципалитетам и компаниям, решившим строить собственные миниэлектростанции.
Если учесть, что сегодня один простенький энергоблок мощностью 1 МВт стоит $350-1000 тыс. то можно посчитать, что на областные деньги каждый год можно будет водить блоки суммарной мощностью 2-5 МВт. Это смехотворно мало, столько потребляют несколько многоэтажек. Поэтому, единственный способ реально развивать малую энергетику – это сделать этот сектор привлекательным для бизнеса.
Рассуждая о региональной энергетике, профессор кафедры систем управления энергетикой УГТУ-УПИ Борис Ратников, недавно сказал, что, по его мнению, если капвложения на ввод 1 МВт мощности будут не выше $400 тыс., то вложения в малую энергетику будут окупаться 1-2 года. И при таких условиях инвестор придет в этот бизнес. И даже если потребуются в полтора раза большие затраты, то интерес частного капитала сохранится.

Нелегальные электроны

Тем не менее, миниэлектростанции, на территории Свердловской области, сегодня можно пересчитать по пальцам. Причем, почти все из них являются не коммерческими проектами, а способом «поддержки штанов» достаточно крупных промпредприятий. Если некий завод начинает ощущать нехватку тепла или электричества, он просто ставит у себя на площадке газопоршневой или газотурбинный энергоблок, подключает его к газовой трубе и использует «собственную» энергию параллельно с той, что закупает у энергетиков (или в периоды пиковых нагрузок). О продаже на сторону избытков электроэнергии, как правило, и речи не идет. Если же у владельцев блока такая мысль появляется, то реализовать ее получается далеко не всегда. Эту энергию не выпускают владельцы электрических сетей. Точнее, не пускают ее в свои сети. Уже были случаи, когда промышленники перегоняли электроны сторонним потребителям по сетям местной сетевой компании нелегально (сформулировано не по науке, но, в общем, суть, надеюсь, ясна).
Предприятия, для которых энергетический бизнес не главный, еще могут мириться с таким положением вещей. Но что делать компаниям, целенаправленно развивающим генерацию?
Еще два года назад компания “ГТ ТЭЦ-Энерго” запустила в городе Реже две газотурбинные установки, общей мощностью 12 МВт. А после этого потратила больше года на то, чтобы подключится к региональным электросетям. Когда же разногласия с владельцем сетей – “Свердловэнерго” – были в основном решены, встал вопрос о покупателе энергии. Областная сбытовая компания “Свердловэнергосбыт” не выразила особого желания возиться со считанными мегаваттами из Режа. Хорошо, что как раз в это время на контакт с “ГТ ТЭЦ-Энерго” вышел независимый сбытовик “Энергоджинн”, который фактически и вывел энергию компании на рынок и обеспечил ей сбыт. После этого, кстати, “Энергоджинн” выводил на рынок 16 МВт, вырабатываемые компанией “Газтурбосервис”, имеющей пару газотурбинных установок на территории Тюменского моторостроительного завода. Причем там процесс проходил даже более драматично. Сетевики пустили эту энергию в сеть, только после угрозы судебного иска.
Начальник отдела энерго- и ресурсосбережения министерства промышленности, энергетики и науки Свердловской области Николай Смирнов уверен, что, несмотря на то, что по закону сети обязаны принимать энергию от независимой генерации, но они этому будут препятствовать, даже в ходе реализации областной программы. То есть, владельцам малых электростанций раньше или позже придется прошибать лбом дорогу для своих электронов. Правда, Николай Смирнов, заметил, что в ряде случаев запреты сетевиков обоснованны. Энергия от малой генерации часто просто не соответствует стандартам по качеству (частота, стабильность напряжения и т.д., всего 84 критерия).

Так почем кило электричества?

Представители “классической” энергетики, достаточно осторожно, если не сказать – скептически – оценивают перспективу энергетики малой. Например, первый заместитель исполнительного директора по экономике и финансам ОАО «Свердловэнергосбыт» Борис Бокарев считает, что малая генерация в принципе не способна конкурировать с «нормальной» по ценам: «На оптовом рынке мы покупаем один киловатт за 55-60 копеек, а у малой энергетики этот же киловатт будет стоить 80 копеек» (речь, по-видимому, идет об энергии высокого напряжения, которая “по физике” стоит дешевле, чем низкого). Похожих воззрений придерживается генеральный директор ЗАО “Свердловская энергетическая компания” Владимир Нечитайлов. Он считает, что даже малая генерация требует весьма серьезных вложений (с учетом инфраструктуры – десятки млн. руб.) и долго окупается (7-10 лет). Соответственно, на такое может решиться только холдинг с миллиардными оборотами. Ну и КПД у малышей ниже, чем у солидных электростанций. Правда, Владимир Нечитайлов признал, что малая энергетика может выигрывать за счет гибкости управления.
А вот по наблюдениям Николая Смирнова, малая генерация, при нынешних тарифах на энергию, может оказаться выгодным проектом. “Свердловэнергосбыт” продает электроэнергию низкого напряжения по цене до 1,4 руб. за кВт. А стоимость энергии, вырабатываемой газопоршневыми установками, составляет 45-70 коп за кВт. Причем, эти цифры подтверждены практикой. В области уже работает несколько газопоршневых энергоблоков. Установка Богдановичского завода мощностью 200 кВт, дает электричество по цене 67 коп за кВт, а пятисоткиловаттный блок от «Волжского дизеля» - по 53 коп.
Но и это еще не все резоны для занятия малой генерацией. В России есть такое любопытное явление как «плата за подключение к энергетическим сетям». Так вот, в некоторых местах удельная стоимость подключения уже достигла удельной стоимости строительства собственной электростанции. Например, если некая московская фирма хочет получать 1 МВт энергии, то ей придется разово заплатить сетевикам за подключение не менее $600 тыс. А мы знаем, что за эти же деньги предприятие уже вполне может построить собственный мегаваттный энергоблок. И если в первом случае деньги будут безвозвратно потеряны, то во втором – они вернутся за три-четыре года благодаря низкой себестоимости «своей» энергии.
Правда, окупаться подобные проекты будут при условии, что предприятие будет потреблять не только собственное электричество, но и тепло, вырабатываемое на этом же блоке. Ну и конечно, очень желательно, чтобы у бизнеса все-таки была возможность продавать излишки энергии. Ах да… еще не стоит забывать о бесперебойности энергоснабжения. Даже самый лучший энергоблок иногда останавливается. А на время остановок предприятию надо получать энергию либо из сетей, либо от своего запасного блока. Понятно, что это снижает привлекательность инвестиций в малую энергетику. Во всяком случае, делает их привлекательность небесспорной.

Наверное, вы ужеопределились с видом электростанции или энергоустановки и приняли решение о еестроительстве. Построить электростанцию – не проблема. Но вот как ее оформить…Здесь возникают вопросы: какой статус имеет электростанция и энергоустановка,какими нормами законодательства регулируются вопросы строительства электростанций малой мощности, нужныли разрешения и какие и так далее. Ответы на данные вопросы нужно найтизаранее, чтобы впоследствии контролирующие органы не заставили вас разобратьпостроенную электростанцию как незаконно построенную. А ведь это будет дороже,чем изначально оформить все документы на строительство согласно требованиямзакона.

В данной статье мнехотелось бы ответить на вопрос, что такое электростанция малой мощности(энергоустановка), каков ее статус в понимании российского законодательства.

В последующемматериале я расскажу об аналогичных требованиях украинского законодательства.

Электростанция: объект капитальногостроительства или нет?

Вы располагаетеследующими возможностями:

1) Построитьсобственную электростанцию у себя на земельном участке для энергоснабжениясвоего дома либо фермерского хозяйства;

2) Установить энергоустановку прямо на крыше своего дома.

3) Построить электростанцию из несколькихэнергоустановок для энергоснабжения своего промышленного предприятия либоцелого жилого района.

Дело в том, чтозаконодательные требования к строительству таких энергетических объектов будутзависеть от того, является ли каждая конкретная электростанция илиэнергоустановка объектом капитального строительства или нет.

Ответим на этотвопрос.

Из положений Федерального закона «Обэлектроэнергетике» (ст. 42) косвенновытекает, что объекты электроэнергетики могут быть как объектами капитальногостроительства, так и не являться ими.

Что такое объекткапитального строительства? Мы найдем ответ в Градостроительном кодексе РФ (ст.1).

Объект капитальногостроительства - здание, строение, сооружение, объекты, строительствокоторых не завершено, за исключением временных построек, киосков, навесов идругих подобных построек.

Но что понимаетсяпод «зданиями, сооружениями». Ответнайдем в Гражданском кодексе РФ (ст. 130). К недвижимым вещам (недвижимоеимущество, недвижимость) относятся земельные участки, участки недр и все, чтопрочно связано с землей, то есть объекты, перемещение которых без несоразмерногоущерба их назначению невозможно, в том числе здания, сооружения, объектынезавершенного строительства.

Таким образом, здания, сооружения – это объекты, которыепрочно связаны с землей и их перемещение без ущерба для их назначенияневозможно. Но к таким объектам относятся не только здания и сооружения, а и вцелом все объекты, которые отвечают указанному критерию. Такие объектыодновременно являются объектами капитального строительства и недвижимостью.

По этому поводутакже существует разъяснение Департамента недвижимого имуществаМинэкономразвития РФ (Письмо Минэкономразвития РФ от 08.04.2013 № ОГ-Д23-1905).

Департаментссылается на часть 2 статьи 2 Федерального закона от 30 декабря 2009 г. № 384 ? ФЗ «Техническийрегламент о безопасности зданий и сооружений»:

здание – результат строительства, представляющий собойобъемную строительную систему, имеющую надземную и (или) подземную части,включающую в себя помещения, сети инженерно-технического обеспечения и системыинженерно-технического обеспечения и предназначенную для проживания и (или)деятельности людей, размещения производства, хранения продукции или содержанияживотных;

сооружение – результат строительства, представляющийсобой объемную, плоскостную или линейную строительную систему, имеющуюназемную, надземную и (или) подземную части, состоящую из несущих, а вотдельных случаях и ограждающих строительных конструкций и предназначенную длявыполнения производственных процессов различного вида, хранения продукции,временного пребывания людей, перемещения людей и грузов.

«Таким образом, помнению Департамента недвижимости, установление характеристик объекта,позволяющих отнести объект к объекту недвижимости, осуществляет кадастровыйинженер при проведении кадастровых работ, исходя из имеющихся документов (в томчисле разрешения на строительство, разрешения на ввод объекта в эксплуатацию),фактической связи с землей (в частности, наличие фундамента) и руководствуясьположениями федеральных законов».

Для определениястатуса объекта также можно ориентироваться на характеристики объектов,закрепленные в региональном законодательстве.

Так, для Москвы действуетспециальное Постановление Правительства Москвы № 1139-ПП от 2008-12-16 «Об утверждении Положения о размещении иустановке на территории города Москвы объектов, не являющихся объектамикапитального строительства».

В этом документеприведен перечень характеристик объектов некапитального строительства:

К объектам, неявляющимся объектами капитального строительства, относятся сооружения,конструкции, площадки независимо от их функционального назначения (далее -некапитальные объекты).

Общим критериемотнесения объектов к некапитальным объектам (движимому имуществу) согласнонормам гражданского законодательства является возможность свободногоперемещения указанных объектов без нанесения несоразмерного ущерба ихназначению, включая возможность их демонтажа (сноса) с разборкой насоставляющие сборно-разборные перемещаемые конструктивные элементы.

К некапитальным объектам относятся:

1). Объектыобслуживания - постройки, сооружения и площадки придорожной сервисно-транспортнойинфраструктуры: автопарковки (в том числе сборно-разборные механизированные),кабинные уличные туалеты, телефонные кабины, автоматические устройства дляприема платежей физических лиц (платежные терминалы) и т.п.

2) Объектырекреационно-развлекательного назначения: аттракционы, шапито, специальнымобразом благоустроенные площадки и т.п

3) Объектыпроизводственного, технического назначения, сервисно-коммунальнойинфраструктуры: ангары, производственные сооружения из быстровозводимых иразбираемых конструкций, пункты приема вторичных материальных ресурсов,строительные городки, бытовки, временные склады строительных и инертныхматериалов, укрытия, тенты и навесы для открытых автостоянок, быстровозводимыегаражи-стоянки модульного типа, в том числе расположенные в подмостовыхпространствах.

4) Площадки для выгула собак, а также объекты коммунальнойинфраструктуры и т.п.

5) Объекты исооружения из быстровозводимых конструкций в виде накрытия пешеходных тоннелейи лестничных сходов, элементы организации придомовой территории при устройствевходных групп: пандусы, подъемные механизмы и иные устройства, монтируемые сцелью обеспечения безбарьерной среды жизнедеятельности для инвалидов и другихмаломобильных групп населения.

Исходя их этого, главный критерий, на основании которого нужно определятьявляется ли генерирующий объект объектом капитального строительства – это 1)связь с землей; 2) невозможность перемещения без ущерба для назначения объекта.Плюс к этому, для определения статуса объекта необходимо учитывать признакисооружения, приведенные выше, а также идти от противного – ориентироваться наперечень объектов некапитального строительства. Ведь то, что в этот перечень невходит соответственно – объекты капитального строительства.

В целом, еслиобъективно оценить и учесть вышеперечисленные признаки и критерии:

1) собственнаяэлектростанция, построенная отдельно на земельном участке с цельюэнергоснабжения дома или фермерского хозяйства, как правило, будет являтьсяобъектом капитального строительства. Ведь обычно это отдельное сооружение,имеющее фундамент и связанное с землей, плюс к этому подключенное к инженернымкоммуникациям (если в качестве топлива используется, к примеру, газ).

2) энергоустановкана крыше дома, конечно, не будет являться объектом капитального строительства.

3) электростанциядля снабжения промышленного предприятия или жилого района, как правило, - это объект капитального строительства, таккак подпадает по вышеприведенныекритерии.

Однако является ликонкретная энергоустановка или электростанция объектом капитального строительства или нет – необходимо выяснитьдополнительно в каждом конкретном случае. Потому что все будет зависеть, впервую очередь, от технических решений. Возможно, прогресс науки и техникидойдет до того, что электростанцию можнобудет построить и без устойчивой связи с землей. А тогда она не будет считатьсяобъектом капитального строительства. А соответственно тогда автоматическиисчезает ряд юридических формальностей.

А кто и как будетвыяснять, является ли энергообъект объектом капитального строительства или нет?

Дело в том, чтоздесь законодательство не совершенно. Нет механизма и государственных органов,которые бы предварительно провели экспертизу объекта, чтобы определить егостатус. Это определяет на свое усмотрение собственник или законный владелецобъекта строительства (в том числе электростанции / энергоустановки). Этобольшой минус законодательства.

Как указано выше вПисьме Департамента недвижимости Минэкономразвития, установление характеристик,позволяющих отнести объект к объекту недвижимости (а равно – капитальногостроительства) проводит кадастровый инженер при проведении кадастровых работ наоснове имеющихся документов, фактической связи с землей и положенийзаконодательства.

Законом о кадастрене предусмотрено предварительное уведомление заявителя о возможном принятиирешения о приостановлении либо об отказе в осуществлении кадастрового учета попричинам того, что объект не является объектов недвижимости (а равно –капитального строительства).

Таким образом, согласно нормам закона официально узнать, является лиэлектростанция объектов капитального строительства или нет можно только ПОСЛЕее строительства при осуществлении ееучета как объекта недвижимости. Предварительно получить официально заключениегосударственного органа невозможно.

Поэтому, все, что остается на этапе планирования строительстваэлектростанции – это самостоятельно (либо с привлечением организаций,занимающихся подготовкой проектной документации), учитывая вышеуказанные критерии и характеристики,определить статус объекта. Ведь от этого будет зависеть, какие юридическиепроцедуры необходимо вам пройти до строительства электростанции.

Поскольку вбольшинстве случаев электростанции являются объектами капитального строительства, в следующей статье мы рассмотрим законодательные требования к строительствутаких электростанций малой мощности.

Рекомендуем почитать

Наверх