Вращение пропеллера. Пропеллеры для квадрокоптера — основные параметры и как подобрать

Бизнес 02.01.2020
Бизнес

Лопастной винт самолета, он же пропеллер или лопаточная машина, которая приводится во вращение с помощью работы двигателя. С помощью винта происходит преобразование крутящего момента от двигателя в тягу.

Воздушный винт выступает движителем в таких летательных аппаратах, как самолеты, цикложиры, автожиры, аэросани, аппараты на воздушной подушке, экранопланы, а также вертолеты с турбовинтовыми и поршневыми двигателями. Для каждой из этих машин винт может выполнять разные функции. В самолетах он используется в качестве несущего винта, который создает тягу, а в вертолетах обеспечивает подъем и руление.

Все винты летательных аппаратов делятся на два основных вида: винты с изменяемым и фиксированным шагом вращения. В зависимости от конструкции самолета винты могут обеспечивать толкающую или тянущую тягу.

При вращении лопасти винта захватывают воздух и производят его отброс в противоположном направлении полета. В передней части винта создается пониженное давление, а позади – зона с высоким давлением. Отбрасываемый воздух приобретает радиальное и окружное направление, за счет этого теряется часть энергии, которая подводится к винту. Сама закрутка воздушного потока снижает обтекаемость аппарата. Сельскохозяйственные самолеты, проводя обработку полей, имеют плохую равномерность рассеивание химикатов из-за потока от пропеллера. Подобная проблема решена в аппаратах, которые имеют соосную схему расположения винтов, в данном случае происходит компенсация с помощью работы заднего винта, который вращается в противоположную сторону. Подобные винты установлены на таких самолетах, как Ан-22 , Ту-142 и Ту-95 .

Технические параметры лопастных винтов

Наиболее весомые характеристики винтов, от которых зависит сила тяги и сам полет, конечно же, шаг винта и его диаметр. Шаг – это расстояние, на которое может переместиться винт за счет ввинчивания в воздух за один полный оборот. До 30-х годов прошлого века использовались винты с постоянным шагом вращения. Только в конце 1930-х годов практически все самолеты оснащались пропеллерами со сменным шагом вращения

Параметры винтов:

    Диаметр окружности винта – это размер, который описывают законцовки лопастей при вращении.

    Поступь винта – реальное расстояние, проходящее винтом за один оборот. Данная характеристика зависит от скорости движения и оборотов.

    Геометрический шаг пропеллера – это расстояние, которое мог бы пройти винт в твердой среде за один оборот. От поступи винта в воздухе отличается скольжением лопастей в воздухе.

    Угол расположения и установки лопастей винта – наклон сечения лопасти к реальной плоскости вращения. За счет наличия крутки лопастей угол поворота замеряется по сечению, в большинстве случаев это 2/3 всей длины лопасти.

Лопасти пропеллера имеют переднюю – режущую – и заднюю кромки. Сечение лопастей имеет профиль крыльевого типа. В профиле лопастей имеется хорда, которая имеет относительную кривизну и толщину. Для повышения прочности лопастей винта используют хорду, которая имеет утолщение к корню пропеллера. Хорды сечения находятся в разных плоскостях, поскольку лопасть изготовлена закрученной.

Шаг винта является основной характеристикой гребного винта, он в первую очередь зависит от угла установки лопастей. Шаг измеряется в единицах пройденного расстояния за один оборот. Чем больший шаг делает винт за один оборот, тем больший объем отбрасывается лопастью. В свою очередь увеличение шага ведет за собой дополнительные нагрузки на силовую установку, соответственно, количество оборотов снижается. Современные летательные аппараты имеют возможность изменять наклон лопастей без остановки двигателя.

Преимущества и недостатки воздушных винтов

Коэффициент полезного действия винтов на современных самолетах достигает показателя в 86%, это делает их востребованными авиастроением. Также нужно отметить, что турбовинтовые аппараты значительно экономнее, чем реактивные самолеты. Все же винты имеют некоторые ограничения как в эксплуатации, так и в конструктивном плане.

Одним из таких ограничений выступает «эффект запирания», который возникает при увеличении диаметра винта или же при добавлении количества оборотов, а тяга в свою очередь остается на том же уровне. Это объясняется тем, что на лопастях пропеллера возникают участки со сверхзвуковыми или околозвуковыми потоками воздуха. Именно этот эффект не позволяет летательным аппаратам с винтами развить скорость выше чем 700 км/час. На данный момент самой быстрой машиной с винтами является отечественная модель дальнего бомбардировщика Ту-95 , который может развить скорость в 920 км/час.

Еще одним недостатком винтов выступает высокая шумность, которая регламентируется мировыми нормами ICAO. Шум от винтов не вписывается в стандарты шумности.

Современные разработки и будущее винтов самолета

Технологии и опыт работы позволяют конструкторам преодолеть некоторые проблемы с шумностью и повысить тягу, миновав ограничения.

Таким образом удалось миновать эффект запирания за счет применения мощного турбовинтового двигателя типа НК-12, который передает мощность на два соосные винта. Их вращение в разные стороны позволило миновать запирание и повысить тягу.

Также используются на винтах тонкие саблевидные лопасти, которые имеют возможность затягивания кризиса. Это позволяет достичь более высоких показателей скорости. Такой тип винтов установлен на самолете типа Ан-70.

На данный момент ведутся разработки по созданию сверхзвуковых винтов. Несмотря на то что проектирование ведется очень долго при немалых денежных вливаниях, достичь положительного результата так и не удалось. Они имеют очень сложную и точную форму, что значительно затрудняет расчеты конструкторов. Некоторые готовые винты сверхзвукового типа показали, что они очень шумные.

Заключение винта в кольцо – импеллер – является перспективным направлением развития, поскольку снижает концевое обтекание лопастей и уровень шума. Также это позволило повысить безопасность. Существуют некоторые самолеты с вентиляторами, которые имеют ту же конструкцию, что и импеллер, но дополнительно оснащаются аппаратом направления воздушного потока. Это значительно повышает эффективность работы винта и двигателя.

Это отдельная самостоятельная единица, а точнее целый лопастной агрегат. Он является движителем для аппарата, на котором установлен, то есть превращает мощность двигателя в тягу и, в конечном счете, в движение.

Человек уже давно проявлял внимание к винту. Первые теоретические свидетельства этого имеются еще в рукописях и рисунках Леонардо да Винчи. А практически его впервые применил (для метеорологических приборов) М. В. Ломоносов. вначале устанавливался на дирижаблях, в последствии и по сегодняшнее время на самолетах и при использовании и двигателей. Применяется он также и на наземных аппаратах. Это так называемые суда на воздушной подушке, а также аэросани и глиссеры. То есть история его (как и история всей авиации:-)) длинна и увлекательна и еще, похоже, далеко не закончена.

Что касается теории и принципа действия… Хотел начать рисовать векторные диаграммы, а потом передумал:-). Во-первых не тот сайт, а, во-вторых, все это я уже описал , и даже :-). Скажу лишь, что лопасти воздушного винта имеют аэродинамический профиль, и при его вращении в воздушной среде возникает та же картина, как и при движении крыла.

Аэродинамическая сила (картинка из предыдущей статьи:-))

Все те же , тот же скос потока, только теперь уже подъемная сила становится тягой винта, заставляющей самолет двигаться вперед.

Есть, конечно, и свои особенности. Ведь (точнее его лопасти) по сравнению с совершает более сложное движение: вращательное плюс поступательное движение вперед. И на самом деле теория воздушного винта достаточно сложна. Однако для принципиального понимания вопроса всего сказанного вполне достаточно. Остановлюсь только на некоторых особенностях.Замечу, кстати, что винты бывают не только тянущие, но и толкающие (такие, между прочим, стояли на самолете братьев Райт).

Пропеллер немецкого дирижабля SL1 (1911) диаметром 4,4 м.

Воздушный винт для траспортного самолета А400М.

Транспортный самолет А400М.

При вращении воздушного винта и одновременном его движении вперед, каждая его точка как бы движется по спирали, а сам винт как бы «ввинчивается в воздух», почти, как винт в гайку или шуруп в дерево. Аналогия очень даже существенная:-). Похоже на резьбу пары «болт –гайка». Каждая резьба имеет такой параметр, как шаг. Чем шаг больше, тем резьба как бы более растянута, и болт в гайку ввинчивается быстрее. Понятие шага существует и для воздушного винта. По сути дела это такое воображаемое расстояние, на которое передвинется вращающийся в воздухе винт при его повороте на один оборот. Для того, чтобы он «ввинчивался» быстрее, нужно, чтобы сила, его тянущая (тяга винта, тот самый аналог подъемной силы), была больше. Или же все, соответственно, наоборот. А этого можно достичь за счет изменения величины аналога угла атаки, который называется углом установки лопасти винта, или попросту шагом винта . Понятие шага винта существует для всех видов воздушных винтов, для самолетов и для вертолетов, и принцип их действия вобщем-то одинаков.

Транспортник Кролевских ВВС Hercules C-4 на стоянке с винтами во флюгерном режиме.

Первые воздушные винты, стоявшие на аэропланах, имели фиксированный шаг. Но дело в том, что любой винт имеет такой параметр, как коэффициент полезного действия, который оценивает эффективность его работы. А она может меняться в зависимости от изменения скорости полета, мощности двигателя, да и лобовое сопротивление винта на это влияет. Вот для того, чтобы сохранить кпд на достаточной высоте была придумана (еще в 30-х года 20 в.) система изменения шага и появились винты изменяемого в полете шага (ВИШ ). Теперь, в зависимости от задаваемого летчиком режима полета, шаг винта может меняться. Кроме того обычно существуют еще два специальных режима. Реверсивный – для создания при торможении самолета на земле и флюгерный , который используется при выключении (чаще аварийном) двигателя в полете. Тогда лопасти выставляются «по потоку», чтобы не создавать лишнего сопротивления полету.

Диаметр винта и его шаг – это основные технические параметры воздушного винта. Существует еще такое понятие, как крутка. То есть каждая лопасть по всей длинне слегка закручена. Это делается опять же для того, чтобы при одной и той же мощности лопасть создавала наибольшую тягу.

Американский экспериментальный самолет Bell X-22 с импеллерами 1966 г.

Французский экспериментальный самолет с импеллерами NORD 500 CADET. 1967 г.

1932 г. Италия. Экспериментальный самолет с импеллером "Летающая бочка"

Современные винты вообще достаточно разнообразны по своей конструкции. Количество лопастей может меняться (в среднем от 2 до 8). может быть как тянущим, так и толкающим. Винт по- другому еще называется пропеллер . Это устаревшее название и происходит от латинского prōpellere, что значить гнать, толкать вперед. Однако сейчас еще одно слово вошло в употребеление. Это слово импеллер . Оно означает «крыльчатка» и обозвали им определенный тип воздушного винта, заключенного в кольцевую оболочку. Это позволяет повысить эффетивность его работы, снизить потери и увеличить безопасность. Однако такого рода летательные аппараты находятся только лишь в стадии экспериментальной разработки.

Основной скоростной диапазон применения винтов ограничен скоростями 700-750 км/ч. Но даже это достаточно большая скорость и для обеспечения устойчивой и эффективной работы во всем диапазоне применяются различные технические ухищрения. В частности разрабатываются многолопастные винты с саблевидными лопастями, ведется работа над сверхзвуковыми винтами, применяются вышеуказанные импеллеры. Кроме того уже достаточно давно применяются так называемые соосные винты, когда на одной оси вращаются два воздушных винта в различных направлениях. Примером самолета с такими винтами может быть самый быстрый самолет с турбовинтовыми двигателями российский стратегический бомбардировщик ТУ-95 . Его скорость (макс.) 920 км/ч.

Стратегический бомбардировщик ТУ-95.

К сожалению, , особенно в сочетании с , имеет все-таки ограниченную область применения. Конечно, там, где так необходимы ближнемагистральные самолеты и так называемая он себя еще покажет. Но тем не менее соревнование высота-скорость-дальность он вместе со своим спутником поршнеым мотором уже проиграл . Но об этом в другой статье…

Фотографии кликабельны.

Что влияет на тягу и скорость модели?
P.S. Многие не зная этого, начинают строчить свои комментарии на странице понравившегося им мотора или винта подвергая себя быть сильно униженными со стороны других участников клуба, не по причине что тут клуб злых ненавистников новичков, а что многие не пользуясь поиском и просмотром хотя бы части записей, задают снова и снова один и тот же вопрос и сидя у экрана с вот вот лопнущем терпением дожидаются ответа, в надежде что бы цифра была как можно больше, всё это каждый раз поднимает и поднимает столбик терпения всё выше и выше) и время от времени он падает на очередном новичке. Так что если ответ на ваш вопрос, был не совсем адекватный и вами ожидаемый, то знайте чей то столбик терпения опустился до 0 отметки) и незачем торопиться на форум или в обратную связь с яростным желанием написать кляузу на этого негодяя, у которого на 101 раз прочтения подобного вопроса как и у 100 предыдущих, лопнуло терпение.
Так же не стоит задавать вопросов на тему, дальность сигнала и полёта моей туринг 9, на сколько хватит заряда моего аккумулятора, какой лучше взять мотор и др. Некоторые вопросы просто на столько заевшиеся что тошнить хочется, а другая видимо чисто риторическая с целью задать вопрос что бы проста поболтать, так как никто же не знает какой у вас мотор стоит при выборе аккум. какие там используются винты, вес модели тоже никто не знает, и редко кто сам это первый напишет.. вот и приходится всех расспрашивать,как на допросе словно каком то.(Так что на будущее если кто то надумает задавать такие вопросы пишите всё, для чего, на что повесить хотите, в смысле какой самолёт для каких целей будет служить и тд).

Вообщем хватит об этом передём к винтам. И так: у винта есть 2 обозначения диаметр и шаг винта, давай те посмотрим, что это такое и для чего оно нужно.

Диаметр - дает тягу...
- Шаг винта - дает скорость...

На картинках в описаниях товара обычно эта информация вся есть, как на примере ниже. Так же ещё многие продавцы пишут размер отверстия крепления винта
.

Определяющими являются диаметр и шаг винта. Шаг винта соответствует воображаемому расстоянию, на которое передвинется винт, ввинчиваясь в несжимаемую среду за один оборот. То есть проще говоря сколько винт за 1 полный оборот на 360º возьмёт воздуха перед собой.
Лопасти винта, вращаясь, захватывают воздух и отбрасывают его в направлении, противоположном движению. Перед винтом создаётся зона пониженного давления, за винтом - повышенного. Вращение лопастей воздушного винта приводит к тому, что отбрасываемые им массы воздуха приобретают окружные и радиальные направления и на это расходуется часть энергии, подводимой к винту.

Кстати говоря, отступая немного от основной темы, самый быстрый винтовой самолёт - бомбардировщик Ту-95 - имеет максимальную скорость 920 км/ч. российский турбовинтовой стратегический бомбардировщик-ракетоносец, один из самых быстрых винтовых самолётов, ставший одним из символов холодной войны.

Обычно производитель двигателя указывает рекомендуемые винты и измеренные им характеристики.(Как на фото ниже) Дальше, выбирайте нужный вам вариант.
Если хотите поэкспериментировать - выбираете определённый вариант из рекомендуемого производителем и начинаете играться. Т.е. , если вам нужна тяга, то увеличиваете на дюйм диаметр и уменьшаете на дюйм шаг. Так, чтоб сумма шага и диаметра оставалась одинаковой с рекоммендуемым производителем как на сайте http://gazovik.online
Если нужна скорость - увеличиваете на дюйм шаг и уменьшаете на дюйм диаметр.
К примеру винт 9*6 на 3х банках липо, мотор(не принципиально какой в данном случае) тянет 700г при оборотах 7000, для поднятия тяги нам нужно выбрать винт 10*5, а следовательно для повышения скорости 8*7.
...или же ещё пример...
Производитель рекомендует к установленному на модель мотору винт 8х4.3! С данным винтом мотор выдаст примерно 240 грамм тяги!!!
Исходя из полетного веса модели, можно заменить винт 8х4.3 на винт 7х3.5!

Для получения следующих плюсов и минусов.
1.Тяга упадёт примерно до 200 грамм! Для модели в 160 грамм, а тем более тренера, это не страшно.
2. Винт станет намного короче, что приведёт к более легким посадкам модели без шасси. Удобно для планеров которые запускаются с руки.
3. Потребляемый мотором ток значительно уменьшился, что в конечном итоге даст+2,+3 минуты полетного времени.

Из этого следует:

1. Нужно подбирать винты исходя из полетного веса модели и опираясь на рекомендации производителя.
2. Нужно подбирать винты исходя из "вида" и назначения модели
3. Нужно подбирать винты опираясь на параметры мотора (максимальный ток нагрузки, обороты на вольт и т.д.)

Выводы: нужно как минимум 2-3 различных винтов (чуть больше и чуть меньше по параметрам от рекомендуемого производителем) для нахождения среди них наиболее оптимального для достижения поставленной цели. Все это подбирается экспериментальным путем.

На самом деле есть ещё куча не мало важных нюансов, при выборе мотора и пропеллера, в которые я бы вам не советовал внедряться и лишним забивать себе голову, а просто брать те винты которые советует вам продавец мотора, для наилучшей тяги, ну и если есть желание эксперементировать с винтами немного отличающимися от рекомендуемых.
Но если всё таки желание есть лезть дальше в дебри, то вот ещё статейка - продолжение специально для вас.

Как вариант для более точного и эффективной работы мотора можно производить замеры напряжения ваттметром во время его работы с при разных винтах, что бы не перегружать мотор и не выходить за рамки его номинальной мощности, дабы не спалить обмотку в попытках выжать максимум с мотора из за нежелания его замены на другой более подходящий. Кому интересно могут ознакомиться со схемой ниже.


Смысл понятен я думаю и он тут один. Винт насадил - дал полный газ, замерил тягу, замерил показания ваттметра, сравнил с теми которые идут в технических характеристиках на данный мотор, если меньше заявленных показывает значит хорошо, если больше то плоха, для максимальной эффективности мотора мотребляемый ток должен быть как можно ближе к номинальному в характеристиках, но не превышать его.

Ну и наконец пара ответов на вопросы которые тоже иногда попадаются.
Что влияет на минимальную скорость модели?
Самолеты способны летать с низкой скоростью по причине малой нагрузки на крыло, чем больше нагрузка - тем выше должна быть скорость что бы самолёт не рухнул на землю или больше по площади крыло.

Почему нельзя обрезать концы винта?
Шаг винта не постоянен: у основания больше, а к концу меньше.
Производителем указывается какой-то усредненный "рабочий", учитывая что максимальная эффективность считается ближе к концу лопасти.
Обрезая винт у конца мы изменяем этот показатель - делаем шаг большим...
Примерно: если взять винт 9х6 и обрезать на дюйм думая что получим 8х6 - ошибочно, получим 8х7 - вот так-то.

По причине отсутствия разумных альтернатив почти все самолеты первой половины прошлого века оснащались поршневыми двигателями и воздушными винтами. Для повышения технических и летных характеристик техники предлагались новые конструкции винтов, имевшие те или иные особенности. В середине тридцатых годов была предложена совершенно новая конструкция, позволявшая получить желаемые возможности. Ее автором являлся нидерландский конструктор А.Я. Деккер.

Работу в области винтовых систем Адриаан Ян Деккер начал еще в двадцатых годах. Тогда им была разработана новая конструкция крыльчатки для ветряных мельниц. Для повышения основных характеристик изобретатель предложил использовать плоскости, напоминающие крыло самолета. В 1927 году такая крыльчатка была установлена на одной из мельниц в Нидерландах и вскоре прошла испытания. К началу следующего десятилетия в эксплуатацию ввели три десятка таких крыльчаток, а в 1935-м ими оснащалось уже 75 мельниц.

Опытный самолет с воздушным винтом А.Я. Деккера. Фото Oldmachinepress.com

В начале тридцатых годов, после проведения испытаний и внедрения новой конструкции на мельницах, А.Я. Деккер предложил использовать схожие агрегаты в авиации. По его расчетам, крыльчатка особой конструкции могла бы использоваться в качестве воздушного винта самолета. Вскоре эта идея была оформлена в виде необходимой документации. Кроме того, конструктор озаботился получением патента.

Использование нестандартной конструкции воздушного винта, по задумке изобретателя, должно было дать некоторые преимущества перед существующими системами. В частности, появлялась возможность снизить обороты винтов при получении достаточной тяги. В связи с этим изобретение А.Я. Деккера нередко именуют «Воздушным винтом с малой скоростью вращения» – Low rotation speed propeller. Так же эта конструкция именовалась и в патентах.

Первая заявка на получение патента была подана в 1934 году. В конце июля 1936-го А.Я. Деккер получил британский патент за номером 450990, подтверждавший его приоритет в создании оригинального винтового движителя. Незадолго до выдачи первого патента появилась еще одна заявка. Второй патент был выдан в декабре 1937 года. За несколько месяцев до этого нидерландский конструктор отправил документы в патентные бюро Франции и США. Последнее в начале 1940 года выдало документ US 2186064.


Конструкция винта второй версии. Чертеж из патента

Британский патент №450990 описывал необычную конструкцию воздушного винта, способную обеспечит достаточные характеристики при определенном сокращении негативных факторов. Конструктор предложил использовать крупную ступицу винта оживальной формы, плавно переходящую в носовую часть фюзеляжа самолета. На ней должны были жестко крепиться крупные лопасти необычной формы. Именно оригинальные обводы лопастей, как считал А.Я. Деккер, могли привести к желаемому результату.

Лопасти «низкооборотного» воздушного винта должны были иметь малое удлинение при большой длине хорды. Их следовало монтировать под углом к продольной оси ступицы. Лопасть получала аэродинамический профиль с утолщенной носовой честью. Носок лопасти предлагалось делать стреловидным. Законцовка располагалась почти параллельно оси вращения винта, а заднюю кромку предлагалось сделать изогнутой с выступающей концевой частью.


Внутреннее устройство винта и редуктора. Чертеж из патента

Первый проект 1934 года предусматривал использование четырех лопастей. Винт такой конструкции должен был крепиться на валу, отходящем от редуктора с требуемыми характеристиками. Значительная площадь лопастей винта в сочетании с аэродинамическим профилем должны были обеспечить прирост тяги. Таким образом, появлялась возможность получить достаточную тягу при меньших оборотах в сравнении с винтом традиционной конструкции.

Уже после подачи заявки на первый патент А.Я. Деккер провел испытания опытного винта и сделал определенные выводы. В ходе проверки было установлено, что предложенная конструкция имеет определенные минусы. Так, воздушный поток позади винта расходился в стороны, и лишь малая его часть проходила вдоль фюзеляжа. Это приводило к резкому ухудшению эффективности хвостовых рулей. Таким образом, в существующем виде винт Деккера не мог использоваться на практике.

Дальнейшая проработка оригинального воздушного винта привела к появлению обновленной конструкции с рядом важнейших отличий. Именно она стала предметом второго британского и первого американского патента. Интересно, что в документе из США, в отличие от английского, описывался не только винт, но и конструкция его приводов.


Самолет Fokker C.I - подобная машина стала летающей лабораторией для проверки идей А.Я. Деккера. Фото Airwar.ru

Обновленное изделие Low rotation speed propeller должно было иметь в своем составе сразу два соосных воздушных винта противоположного вращения. Передний винт по-прежнему предлагалось строить на основе крупной обтекаемой ступицы. Лопасти заднего винта следовало крепить к цилиндрическому агрегату сопоставимых размеров. Как и в предыдущем проекте, кок переднего винта и кольцо заднего могли выполнять функции носового обтекателя самолета.

Оба винта должны были получать лопасти схожей конструкции, представлявшей собой развитие наработок первого проекта. Вновь следовало использовать значительно изогнутые лопасти малого удлинения, имеющие развитый аэродинамический профиль. Несмотря на стреловидную переднюю кромку, длина профиля увеличивалась по направлению от корня к законцовке, образуя характерный изгиб задней кромки.

Согласно описанию патента, передний винт должен был вращаться против часовой стрелки (при взгляде со стороны пилота), задний – по часовой стрелке. Лопасти винтов следовало монтировать соответствующим образом. Количество лопастей зависело от требуемых характеристик винта. В патенте приводилась конструкция с четырьмя лопастями на каждом винте, тогда как более поздний опытный образец получил большее число плоскостей.


Процесс сборки оригинальных винтов, можно рассмотреть внутренние элементы изделия. Фото Oldmachinepress.com

В американском патенте описывалась конструкция оригинального редуктора, позволявшего передавать крутящий момент с одного двигателя на два винта противоположного вращения. Вал двигателя предлагалось соединять с солнечной шестерней первого (заднего) планетарного контура редуктора. При помощи закрепленного на месте зубчатого венца мощность передавалась на шестерни-сателлиты. Их водило соединялось с валом переднего винта. Этот вал также соединялся с солнечной шестерней второй планетарной передачи. Вращающееся водило ее сателлитов соединялось с полым валом заднего винта. Такая конструкция редуктора позволяла синхронно регулировать скорость вращения винтов, а также обеспечивать их вращение в противоположных направлениях.

По задумке изобретателя, основная тяга должна была создаваться лопастями переднего винта. Задний, в свою очередь, отвечал за правильное перенаправление потоков воздуха и позволял избавиться от негативных эффектов, наблюдавшихся в базовом проекте. После двух соосных винтов поток воздуха проходил вдоль фюзеляжа и должен был нормально обдувать хвостовое оперение с рулями. Для получения таких результатов задний винт мог иметь уменьшенную скорость вращения – около трети оборотов переднего.

Оригинальный винтовой движитель создавался с учетом возможного внедрения в новые проекты авиационной техники, и потому требовалось провести полноценные испытания. В начале 1936 года Адриаан Ян Деккер основал собственную компанию Syndicaat Dekker Octrooien, которой предстояло проверить оригинальный воздушный винт, и – при получении положительных результатов – заняться продвижением этого изобретения в авиационной отрасли.


Готовый винт на самолете. Фото Oldmachinepress.com

В конце марта того же года «Синдикат Деккера» приобрел многоцелевой самолет-биплан Fokker C.I нидерландской постройки. Эта машина с максимальным взлетным весом всего 1255 кг оснащалась бензиновым двигателем BMW IIIa мощностью 185 л.с. Со штатным двухлопастным деревянным винтом она могла развивать скорость до 175 км/ч и подниматься на высоту до 4 км. После определенной перестройки и установки нового воздушного винта биплан должен был стать летающей лабораторией. В апреле 1937 года компания А.Я. Деккера зарегистрировала модернизированный самолет; он получил номер PH-APL.

В ходе перестройки опытный самолет лишился штатного капота и некоторых других деталей. Вместо них в носовой части фюзеляжа поместили оригинальный редуктор и пару «винтов низкой скорости вращения». Передний винт получил шесть лопастей, задний – семь. Основой нового винта стала пара ступиц, собранных из алюминиевого каркаса с обшивкой из того же материала. Лопасти имели схожую конструкцию. В связи с установкой винтов нос машины самым заметным образом изменил свою форму. При этом цилиндрический обтекатель заднего винта не выступал за пределы обшивки фюзеляжа.

Испытания летающей лаборатории с оригинальным винтом стартовали в том же 1937 году. Площадкой для них стал аэродром Ипенберг. Уже на ранних стадиях проверок было установлено, что соосные винты с лопастями малого удлинения действительно могут создавать требуемую тягу. С их помощью машина могла выполнять рулежки и пробежки. Кроме того, с определенного времени испытатели попытались поднять машину в воздух. Известно, что опытный Fokker C.I смог выполнить несколько подлетов, но о полноценном взлете речи не шло.


Вид спереди. Фото Oldmachinepress.com

Испытания опытного самолета позволили выявить как плюсы, так и минусы оригинального проекта. Было установлено, что пара винтов противоположного вращения действительно способна создавать требуемую тягу. При этом винтомоторная группа в сборе отличалась сравнительно малыми размерами. Еще одним преимуществом конструкции был сниженный шум, производимый лопастями малого удлинения.

Впрочем, не обошлось без проблем. Воздушный винт А.Я. Деккера и необходимый ему редуктор отличались от существующих образцов излишней сложностью изготовления и обслуживания. Кроме того, экспериментальный винт, установленный на Fokker C.I, показал недостаточные характеристики тяги. Он позволял самолету двигаться по земле и развивать достаточно высокую скорость, но для полетов его тяга была недостаточна.

По-видимому, испытания продолжались до самого начала сороковых годов, однако за несколько лет так и не привели к реальным результатам. Дальнейшим работам помешала война. В мае 1940 года гитлеровская Германия напала на Нидерланды, и всего через несколько дней опытный самолет с необычными воздушными винтами стал трофеем агрессора. Немецкие специалисты ожидаемо проявили интерес к этой разработке. Вскоре летающую лабораторию отправили на один из аэродромов вблизи Берлина.


Запуск двигателя, винты начали вращение. Кадр из кинохроники

Имеются сведения о проведении некоторых испытаний силами немецких ученых, однако эти проверки достаточно быстро закончились. По некоторым данным, первая же попытка немцев поднять самолет в воздух завершилась аварией. Машину не стали восстанавливать, и на этом смелого проекта закончилась. Единственный самолет, оснащенный винтами типа Low rotation speed propeller, не смог показать себя с лучшей стороны, и потому от оригинальной идеи отказались. В дальнейшем массово использовались только воздушные винты традиционного облика.

Согласно идеям, лежавшим в основе оригинального проекта, особый «Воздушный винт с малой скоростью вращения» должен был стать полноценной альтернативой системам традиционной конструкции. Отличаясь от них некоторой сложностью, он мог иметь преимущества в виде меньших габаритов, сниженных оборотов и сокращенной шумности. Тем не менее, конкурентной борьбы не вышло. Разработка А.Я. Деккера даже не смогла пройти весь цикл испытаний.

Возможно, по мере дальнейшего развития оригинальные воздушные винты смогли бы показать желаемые характеристики и найти применение в тех или иных проектах авиационной техники. Тем не менее, продолжение работ замедлялось в связи с различными проблемами и обстоятельствами, а в мае 1940 года проект был остановлен из-за нападения Германии. После этого необычная идея окончательно осталась без будущего. В дальнейшем в разных странах вновь прорабатывались перспективные конструкции воздушных винтов, но прямые аналоги системы Адриаана Яна Деккера не создавались.

По материалам:
https://oldmachinepress.com/
http://anyskin.tumblr.com/
http://hdekker.info/
http://strangernn.livejournal.com/
https://google.com/patents/US2186064

Когда только начал заниматься радиоуправляемыми моделями, бывает сложно определить, какой стороной установить пропеллер и какая кромка передняя. На начальном этапе почти на всех пропеллерах, которые вы будете применять будет нанесена маркировка производителя или размеры. Это верхняя сторона, она чаще всего матовая и немного выпуклая. Нижняя сторона обычно гладкая и блестящая, кроме того она вогнутая или почти плоская в зависимости от шага. Переднюю кромку можно легко найти следующим образом, положите пропеллер правильной стороной вверх и найдите высокую часть лопасти. В этом направлении пропеллер должен вращаться вперед.

Что означают буквы и цифры?

Вы можете увидеть буквы и цифры нанесенные на пропеллер, например «GWS 1047 или APC 8 x 4″. Буквы означают производителя пропеллера. Цифры — это диаметр и шаг пропеллера. Диаметр — это размер круга, который описывает пропеллер своими лопастями, а шаг — это расстояние в дюймах, которое пройдет пропеллер за один оборот. Такими образом GWS 0907 — это пропеллер произведенный фирмой GWS с диаметром 9″ и шагом 7″. Gemfan 10 x 4.7 это пропеллер сделанный фирмой Gemfan с диаметром 10″ и шагом 4.7». Маркировка GWS 9x7x3 означает трехлопастный пропеллер диаметром 9″ и шагом 7″ . Все перечисленные ранее пропеллеры вращаются против часовой стрелки, но большинству мультироторных систем также требуются моторы и пропеллеры противоположного вращения. Для обозначения пропеллеров вращающихся по часовой стрелки служит буква «R» напечатанная в конце последовательности букв и цифр. Например, APC 10 x 4.7 R. Просто, правда? Пропеллер с большим шагом применяется совместно с быстро вращающимися моторами и более быстрыми квадрокоптерами. Меньший шаг для медленных полетов и мултикоптеров. Хотя, всегда возможны исключения.

И так: у винта есть 2 обозначения диаметр и шаг винта, давай те посмотрим, что это такое и для чего оно нужно.

— Диаметр — дает тягу…
— Шаг винта — дает скорость…

На картинках в описаниях товара обычно эта информация вся есть, как на примере ниже. Так же ещё многие продавцы пишут размер отверстия крепления винта
.

Определяющими являются диаметр и шаг винта. Шаг винта соответствует воображаемому расстоянию, на которое передвинется винт, ввинчиваясь в несжимаемую среду за один оборот. То есть проще говоря сколько винт за 1 полный оборот на 360º возьмёт воздуха перед собой.
Лопасти винта, вращаясь, захватывают воздух и отбрасывают его в направлении, противоположном движению. Перед винтом создаётся зона пониженного давления, за винтом - повышенного. Вращение лопастей воздушного винта приводит к тому, что отбрасываемые им массы воздуха приобретают окружные и радиальные направления и на это расходуется часть энергии, подводимой к винту.

Обычно производитель двигателя указывает рекомендуемые винты и измеренные им характеристики.(Как на фото ниже) Дальше, выбирайте нужный вам вариант.
Если хотите поэкспериментировать — выбираете определённый вариант из рекомендуемого производителем и начинаете играться. Т.е. , если вам нужна тяга, то увеличиваете на дюйм диаметр и уменьшаете на дюйм шаг. Так, чтоб сумма шага и диаметра оставалась одинаковой с рекоммендуемым производителем.
Если нужна скорость — увеличиваете на дюйм шаг и уменьшаете на дюйм диаметр.

К примеру винт 9*6 на 3х банках липо, мотор(не принципиально какой в данном случае) тянет 700г при оборотах 7000, для поднятия тяги нам нужно выбрать винт 10*5, а следовательно для повышения скорости 8*7.

…или же ещё пример…

Для получения следующих плюсов и минусов.
1.Тяга упадёт примерно до 200 грамм! Для модели в 160 грамм, а тем более тренера, это не страшно.
2. Винт станет намного короче, что приведёт к более легким посадкам модели без шасси. Удобно для планеров которые запускаются с руки.
3. Потребляемый мотором ток значительно уменьшился, что в конечном итоге даст+2,+3 минуты полетного времени.

Из этого следует:

1. Нужно подбирать винты исходя из полетного веса модели и опираясь на рекомендации производителя.
2. Нужно подбирать винты исходя из «вида» и назначения модели
3. Нужно подбирать винты опираясь на параметры мотора (максимальный ток нагрузки, обороты на вольт и т.д.)

Выводы: нужно как минимум 2-3 различных винтов (чуть больше и чуть меньше по параметрам от рекомендуемого производителем) для нахождения среди них наиболее оптимального для достижения поставленной цели. Все это подбирается экспериментальным путем.

На самом деле есть ещё куча не мало важных нюансов, при выборе мотора и пропеллера, в которые я бы вам не советовал внедряться и лишним забивать себе голову, а просто брать те винты которые советует вам продавец мотора, для наилучшей тяги, ну и если есть желание эксперементировать с винтами немного отличающимися от рекомендуемых.
Но если всё таки желание есть лезть дальше в дебри, то вот ещё статейка — продолжение специально для вас.

Как вариант для более точного и эффективной работы мотора можно производить замеры напряжения ваттметром во время его работы с при разных винтах, что бы не перегружать мотор и не выходить за рамки его номинальной мощности, дабы не спалить обмотку в попытках выжать максимум с мотора из за нежелания его замены на другой более подходящий. Кому интересно могут ознакомиться со схемой ниже.


Винт насадил — дал полный газ, замерил тягу, замерил показания ваттметра, сравнил с теми которые идут в технических характеристиках на данный мотор, если меньше заявленных показывает значит хорошо, если больше то плоха, для максимальной эффективности мотора мотребляемый ток должен быть как можно ближе к номинальному в характеристиках, но не превышать его.

Ну и наконец пара ответов на вопросы которые тоже иногда попадаются.

Что влияет на минимальную скорость модели?
Самолеты способны летать с низкой скоростью по причине малой нагрузки на крыло, чем больше нагрузка — тем выше должна быть скорость что бы самолёт не рухнул на землю или больше по площади крыло.

Почему нельзя обрезать концы винта?
Шаг винта не постоянен: у основания больше, а к концу меньше.
Производителем указывается какой-то усредненный «рабочий», учитывая что максимальная эффективность считается ближе к концу лопасти.
Обрезая винт у конца мы изменяем этот показатель — делаем шаг большим …
Примерно: если взять винт 9х6 и обрезать на дюйм думая что получим 8х6 — ошибочно, получим 8х7 — вот так-то

Балансировка пропеллеров.

Балансировка пропеллера важный этап, который часто пропускают. Правильно сбалансированный пропеллер значительно меньше вибрирует, что положительно сказывается на плавности полета. Если вам нужна плавное видео без «желе», вы должны сбалансировать ваши пропеллеры. Видео с процессом балансировки:

Как балансировать трехлопастной пропеллер?

При балансировке небольших 3-х лопастных пропеллеров обычно используется скотч. Далее описание процесса балансировки 3-х лопастных пропеллеров.

Добавляйте вес приклеивая ленту максимум к двум лопастям, никогда ко всем трем. Добавляйте скотч, как можно ближе к центру пропеллера.

Установите пропеллер на балансир, крутаните его и ждите пока он не перейдет в состояние покоя. Обычный случай: все три лопасти распределились по кругу. Одна лопасть оказалась выше, чем остальные, но ни одна из них не смотрит вертикально вверх или вниз. Пометьте самую высокую лопасть одной точкой, самую нижнюю тремя точками, а среднюю двумя точками. Не пропустите этот шаг. В дальнейшем он очень важен.

Сначала балансируйте лопасти 2 и 3. Делайте это добавляя вес к лопасти 2, пока лопасть 1 не будет направлена строго вверх (2 и 3 лопасти теперь сбалансированы). Теперь прибавляйте вес к лопасти 1, пока пропеллер не придет в равновесие. Это очень просто. Только лопасти 1 и 2 будут с кусочками скотча.

Другой случай, одна из лопастей направлена строго вниз. Пометьте ее 3-мя точками, и нанесите 1 и 2 точки на остальные. Теперь добавляйте одинаковый вес на лопасти 1 и 2 одновременно, пока они не будут сбалансированы. Это немного сложнее, чем в первый раз из-за трудности подбора одинакового веса.

Третий случай, когда одна из лопастей направлена вверх. Это самый легкий случай. Пометьте ее одной точкой, а две другие 2-мя и 3-мя точками. Теперь добавляйте вес к лопасти 1, пока она не будет сбалансирована.

При написании статьи использованы материалы http://wiki.openpilot.org/ , а также статья Константина Лияськина.

Оборудование для FPV полетов, квадрокоптеры, мултикоптеры, а также запчасти и комплектующие в Иркутске вы можете приобрести в нашем интернет-магазине

Рекомендуем почитать

Наверх