Является ли медь веществом. Полезные ископаемые: Медные руды

Развитие  02.06.2021
Развитие 

Медь

Медь (лат. Cuprum) - химический элемент I группы периодической системы Менделеева (атомный номер 29, атомная масса 63,546). В соединения медь обычно проявляет степени окисления +1 и +2, известны также немногочисленные соединения трехвалентной меди. Важнейшие соединения меди: оксиды Cu 2 O, CuO, Cu 2 O 3 ; гидроксид Cu(OH) 2 , нитрат Cu(NO 3) 2 . 3H 2 O, сульфид CuS, сульфат(медный купорос) CuSO 4 . 5H 2 O, карбонат CuCO 3 Cu(OH) 2 , хлорид CuCl 2 . 2H 2 O.

Медь - один из семи металлов, известных с глубокой древности. Переходный период от каменного к бронзовому веку (4 - 3-е тысячелетие до н.э.) назывался медным веком или халколитом (от греческого chalkos - медь и lithos - камень) или энеолитом (от латинского aeneus - медный и греческого lithos - камень). В этот период появляются медные орудия. Известно, что при возведении пирамиды Хеопса использовались медные инструменты.

Чистая медь - ковкий и мягкий металл красноватого, в изломе розового цвета, местами с бурой и пестрой побежалостью, тяжелый (плотность 8,93 г/см 3), отличный проводник тепла и электричества, уступая в этом отношении только серебру (температура плавления 1083 °C). Медь легко вытягивается в проволоку и прокатывается в тонкие листы, но сравнительно мало активна. В сухом вохдухе и кислороде при нормальных условиях медь не окисляется. Но она достаточно легко вступает в реакции: уже при комнатной температуре с галогенами, например с влажным хлором образует хлорид CuCl 2 , при нагревании с серой образует сульфид Cu 2 S, с селеном. Но с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют, например, соляная и разбавленная серная кислоты. Но в присутствии кислорода воздуха медь растворяется в этих кислотах с образованием соотвествующих солей: 2Cu + 4HCl + O 2 = 2CuCl 2 + 2H 2 O.

В атмосфере, содержащей CO 2 , пары H 2 O и др., покрывается патиной - зеленоватой пленкой основного карбоната (Cu 2 (OH) 2 CO 3)), ядовитого вещества.

Медь входит более чем в 170 минералов, из которых для промышленности важны лишь 17, в том числе: борнит (пестрая медная руда - Cu 5 FeS 4), халькопирит (медный колчедан - CuFeS 2), халькозин (медный блеск - Cu 2 S), ковеллин (CuS), малахит (Cu 2 (OH) 2 CO 3). Встречается также самородная медь.

Плотность меди, удельный вес меди и другие характеристики меди

Плотность - 8,93*10 3 кг/м 3 ;
Удельный вес - 8,93 г/cм 3 ;
Удельная теплоемкость при 20 °C - 0,094 кал/град;
Температура плавления - 1083 °C ;
Удельная теплота плавления - 42 кал/г;
Температура кипения - 2600 °C ;
Коэффициент линейного расширения (при температуре около 20 °C) - 16,7 *10 6 (1/град);
Коэффициент теплопроводности - 335ккал/м*час*град;
Удельное сопротивление при 20 °C - 0,0167 Ом*мм 2 /м;

Модули упругости меди и коэффициент Пуассона


СОЕДИНЕНИЯ МЕДИ

Оксид меди (I) Cu 2 O 3 и закись меди (I) Cu 2 O , как и другие соединения меди (I) менее устойчивы, чем соединения меди (II). Оксид меди (I), или закись меди Cu 2 O в природе встречается в виде минерала куприта. Кроме того, она может быть получена в виде осадка красного оксида меди (I) в результате нагревания раствора соли меди (II) и щелочи в присутствии сильного восстановителя.

Оксид меди (II) , или окись меди, CuO - черное вещество, встречающееся в природе (например в виде минерала тенерита). Его получают прокаливанием гидроксокарбоната меди (II) (CuOH) 2 CO 3 или нитрата меди (II) Cu(NO 2) 2 .
Оксид меди (II) хороший окислитель. Гидроксид меди (II) Cu(OH) 2 осаждается из растворов солей меди (II) при действии щелочей в виде голубой студенистой массы. Уже при слабом нагревании даже под водой он разлагается, превращаясь в черный оксид меди (II).
Гидроксид меди (II) - очень слабое основание. Поэтому растворы солей меди (II) в большинстве случаев имеют кислую реакцию, а со слабыми кислотами медь образует основные соли.

Сульфат меди (II) CuSO 4 в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях. Водный раствор сульфата меди имеет характерный сине-голубой цвет. Эта окраска свойственна гидратированным ионам 2+ , поэтому такую же окраску имеют все разбавленные растворы солей меди (II), если только они не содердат каких-либо окрашенных анионов. Из водных растворов сульфат меди кристаллизуется с пятью молекулами воды, образуя прозрачные синие кристаллы медного купороса. Медный купорос применяется для электролитического покрытия металлов медью, для приготовления минеральных красок, а также в качестве исходного вещества при получении других соединений меди. В сельском хозяйстве разбавленный раствор медного купороса применяется для опрыскивания растений и протравливания зерна перед посевом, чтобы уничтожить споры вредных грибков.

Хлорид меди (II) CuCl 2 . 2H 2 O . Образует темно-зеленые кристаллы, легко растворимые в воде. Очень концентрированные растворы хлорида меди (II) имеют зеленый цвет, разбавленные - сине-голубой.

Нитрат меди (II) Cu(NO 3) 2 . 3H 2 O . Получается при растворении меди в азотной кислоте. При нагревании синие кристаллы нитрата меди сначала теряют воду, а затем легко разлагаются с выделением кислорода и бурого диоксида азота, переходя в оксид меди (II).

Гидроксокарбонат меди (II) (CuOH) 2 CO 3 . Встречается в природе в виде минерала малахита, имеющего красивый изумрудно-зеленый цвет. Искусственно приготовляется действием Na 2 CO 3 на растворы солей меди (II).
2CuSO 4 + 2Na 2 CO 3 + H 2 O = (CuOH) 2 CO 3 ↓ + 2Na 2 SO 4 + CO 2
Применяется для получения хлорида меди (II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике.

Ацетат меди (II) Cu (CH 3 COO) 2 . H 2 O . Получается обработкой металлической меди или оксида меди (II) уксусной кислотой. Обычно представляет собой смесь основных солей различного состава и цвета (зеленого и сине-зеленого). Под названием ярь-медянка применяется для приготовления масляной краски.

Комплексные соединения меди образуются в результате соединения двухзарядных ионов меди с молекулами аммиака.
Из солей меди получают разноообразные минеральные краски.
Все соли меди ядовиты. Поэтому, чтобы избежать образования медных солей, медную посуду покрывают изнутри слоем олова (лудят).


ПРОИЗВОДСТВО МЕДИ

Медь добывают из оксидных и сульфидных руд. Из сульфидных руд выплавляют 80% всей добываемой меди. Как правило, медные руды содержат много пустой породы. Поэтому для получения меди используется процесс обогащения. Медь получают методом ее выплавки из сульфидных руд. Процесс состоит из ряда операций: обжига, плавки, конвертирования, огневого и электролитического рафинирования. В процессе обжига большая часть примесных сульфидов превращается в оксиды. Так, главная примесь большинства медных руд пирит FeS 2 превращается в Fe 2 O 3 . Газы, образующиеся при обжиге, содержат CO 2 , который используется для получения серной кислоты. Получающиеся в процессе обжига оксиды железа, цинка и других примесей отделяются в виде шлака при плавке. Жидкий медный штейн (Cu 2 S с примесью FeS) поступает в конвертор, где через него продувают воздух. В ходе конвертирования выделяется диоксид серы и получается черновая или сырая медь. Для извлечения ценных (Au, Ag, Te и т.д.) и для удаления вредных примесей черновая медь подвергается сначала огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом. При этом примеси железа, цинка и кобальта окисляются, переходят в шлак и удаляются. А медь разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании.
Основным компонентом раствора при электролитическом рафинировании служит сульфат меди - наиболее распространенная и дешевая соль меди. Для увеличения низкой электропроводности сульфата меди в электролит добавляют серную кислоту. А для получения компактного осадка меди в раствор вводят небольшое количество добавок. Металлические примеси, содержащиеся в неочищенной ("черновой") меди, можно разделить на две группы.

1)Fe, Zn, Ni, Co. Эти металлы имеют значительно более отрицательные электродные потенциалы, чем медь. Поэтому они анодно растворяются вместе с медью, но не осаждаются на катоде, а накапливаются в электролите в виде сульфатов. Поэтому электролит необходимо периодически заменять.

2)Au, Ag, Pb, Sn. Благородные металлы (Au, Ag) не претерпевают анодного растворения, а в ходе процесса оседают у анода, образуя вместе с другими примесями анодный шлам, который периодически извлекается. Олово же и свинец растворяются вместе с медью, но в электролите образуют малорастворимые соединения, выпадающие в осадок и также удаляемые.


СПЛАВЫ МЕДИ

Сплавы , повышающие прочность и другие свойства меди, получают введением в нее добавок, таких, как цинк, олово, кремний, свинец, алюминий, марганец, никель. На сплавы идет более 30% меди.

Латуни - сплавы меди с цинком (меди от 60 до 90% и цинка от 40 до 10%) - прочнее меди и менее подвержены окислению. При присадке к латуни кремния и свинца повышаются ее антифрикционные качества, при присадке олова, алюминия, марганца и никеля возрастает антикоррозийная стойкость. Листы, литые изделия используются в машиностроении, особенно в химическом, в оптике и приборостроении, в производстве сеток для целлюлознобумажной промышленности.

Бронзы . Раньше бронзами называли сплавы меди (80-94%) и олова (20-6%). В настоящее время производят безоловянные бронзы, именуемые по главному вслед за медью компоненту.

Алюминиевые бронзы содержат 5-11% алюминия, обладают высокими механическими свойствами в сочетании с антикоррозийной стойкостью.

Свинцовые бронзы , содержащие 25-33% свинца, используют главным образом для изготовления подшипников, работающих при высоких давлениях и больших скоростях скольжения.

Кремниевые бронзы , содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.

Бериллиевые бронзы , содержащие 1,8-2,3% бериллия, отличаются твердостью после закалки и высокой упругостью. Их применяют для изготовления пружин и пружинящих изделий.

Кадмиевые бронзы - сплавы меди с небольшим количества кадмия (до1%) - используют для изготовления арматуры водопроводных и газовых линий и в машиностроении.

Припои - сплавы цветных металлов, применяемые при пайке для получения монолитного паяного шва. Среди твердых припоев известен медносеребряный сплав (44,5-45,5% Ag; 29-31%Cu; остальное - цинк).


ПРИМЕНЕНИЕ МЕДИ

Медь, ее соединения и сплавы находят широкое применение в различных отраслях промышленности.

В электротехнике медь используется в чистом виде: в производстве кабельных изделий, шин голого и контактного проводов, электрогенераторов, телефонного и телеграфного оборудования и радиоаппаратуры. Из меди изготавливают теплообменники, вакуум-аппараты, трубопроводы. Более 30% меди идет на сплавы.

Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной промышленности (радиаторы, подшипники), для изготовления химической аппаратуры.

Высокая вязкость и пластичность металла позволяют применять медь для изготовления разнообразных изделий с очень сложным узором. Проволока из красной меди в отожженном состоянии становится настолько мягкой и пластичной, что из нее без труда можно вить всевозможные шнуры и выгибать самые сложные элементы орнамента. Кроме того, проволока из меди легко спаивается сканым серебряным припоем, хорошо серебрится и золотится. Эти свойства меди делают ее незаменимым материалом при производстве филигранных изделий.

Коэффициент линейного и объемного расширения меди при нагревании приблизительно такой же, как у горячих эмалей, в связи с чем при остывании эмаль хорошо держится на медном изделии, не трескается, не отскакивает. Благодаря этому мастера для производства эмалевых изделий предпочитают медь всем другим металлам.

Как и некоторые другие металлы, медь входит в число жизненно важных микроэлементов . Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата - медного купороса CuSO 4 . 5H 2 O. В большом количестве он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь необходима всему живому.

§1. Химические свойства простого вещества (ст. ок. = 0).

а) Отношение к кислороду .

В отличие от своих соседей по подгруппе – серебра и золота, - медь непосредственно реагирует с кислородом. Медь проявляет к кислороду незначительную активность, но во влажном воздухе постепенно окисляется и покрывается пленкой зеленоватого цвета, состоящей из основных карбонатов меди:

В сухом воздухе окисление идет очень медленно, на поверхности меди образуется тончайший слой оксида меди:

Внешне медь при этом не меняется, так как оксид меди (I) как и сама медь, розового цвета. К тому же слой оксида настолько тонок, что пропускает свет, т.е. просвечивает. По-иному медь окисляется при нагревании, например, при 600-800 0 C. В первые секунды окисление идет до оксида меди (I), которая с поверхности переходит в оксид меди (II) черного цвета. Образуется двухслойное окисное покрытие.

Q образования (Cu 2 O) = 84935 кДж.

Рисунок 2. Строение оксидной пленки меди.

б) Взаимодействие с водой .

Металлы подгруппы меди стоят в конце электрохимического ряда напряжений, после иона водорода. Следовательно, эти металлы не могут вытеснять водород из воды. В то же время водород и другие металлы могут вытеснять металлы подгруппы меди из растворов их солей, например:

Эта реакция окислительно-восстановительная, так как происходит переход электронов:

Молекулярный водород вытесняет металлы подгруппы меди с большим трудом. Объясняется это тем, что связь между атомами водорода прочная и на ее разрыв затрачивается много энергии. Реакция же идет только с атомами водорода.

Медь при отсутствии кислорода с водой практически не взаимодействует. В присутствии кислорода медь медленно взаимодействует с водой и покрывается зеленой пленкой гидроксида меди и основного карбоната:

в) Взаимодействие с кислотами .

Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют.

Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей:

Исключение составляет только иодоводородная кислота, которая вступает в реакцию с медью с выделением водорода и образованием очень устойчивого комплекса меди (I):

2 Cu + 3 HI → 2 H [ CuI 2 ] + H 2

Медь так же реагирует с кислотами – окислителями, например, с азотной:

Cu + 4HNO 3( конц .) → Cu(NO 3 ) 2 +2NO 2 +2H 2 O

3Cu + 8HNO 3( разбав .) → 3Cu(NO 3 ) 2 +2NO+4H 2 O

А так же с концентрированной холодной серной кислотой:

Cu + H 2 SO 4(конц.) → CuO + SO 2 + H 2 O

C горячей концентрированной серной кислотой:

Cu + 2H 2 SO 4( конц ., горячая ) → CuSO 4 + SO 2 + 2H 2 O

C безводной серной кислотой при температуре 200 0 С образуется сульфат меди (I):

2Cu + 2H 2 SO 4( безводн .) 200 °C → Cu 2 SO 4 ↓ + SO 2 + 2H 2 O

г) Отношение к галогенам и некоторым другим неметаллам .

Q образования (CuCl) = 134300 кДж

Q образования (CuCl 2) = 111700 кДж

Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX 2 .. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул, а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором – около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl 2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты. Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например:

При этом монохлорид выпадает из раствора в виде белого осадка на поверхности меди.

Медь так же достаточно легко ступает в реакции с серой и селеном при нагревании (300-400 °C):

2Cu +S→Cu 2 S

2Cu +Se→Cu 2 Se

А вот с водородом, углеродом и азотом медь не реагирует даже при высоких температурах.

д) Взаимодействие с оксидами неметаллов

Медь при нагревании может вытеснять из некоторых оксидов неметаллов (например, оксид серы (IV) и оксиды азота (II, IV)) простые вещества, образуя при этом термодинамически более устойчивый оксид меди (II):

4Cu+SO 2 600-800°C →2CuO + Cu 2 S

4Cu+2NO 2 500-600°C →4CuO + N 2

2 Cu +2 NO 500-600° C →2 CuO + N 2

§2. Химические свойства одновалентной меди (ст.ок. = +1)

В водных растворах ион Cu + очень неустойчив и диспропорционирует:

Cu + Cu 0 + Cu 2+

Однако медь в степени окисления (+1) может стабилизироваться в соединениях с очень низкой растворимостью или за счет комплексообразовния .

а) Оксид меди (I ) Cu 2 O

Амфотерный оксид. Кристаллическое вещество коричнево-красного цвета. В природе встречается в виде минерала куприта. Исскуственно может быть получен нагреванием раствора соли меди (II) с щелочью и каким-нибудь сильным восстановителем, например, формалином или глюкозой . Оксид меди(I) не реагирует с водой. Оксид меди(I) переводится в раствор концентрированной соляной кислотой с образованием хлоридного комплекса:

Cu 2 O +4 HCl →2 H [ CuCl 2]+ H 2 O

Так же растворим в концентрированном растворе аммиака и солей аммония:

Cu 2 O+2NH 4 + →2 +

В разбавленной серной кислоте диспропорционирует на двухвалентную медь и металлическую медь:

Cu 2 O+H 2 SO 4(разбав.) →CuSO 4 +Cu 0 ↓+H 2 O

Также оксид меди(I) вступает в водных растворах в следующие реакции:

1. Медленно окисляется кислородом до гидроксида меди(II):

2 Cu 2 O +4 H 2 O + O 2 →4 Cu (OH ) 2

2. Реагирует с разбавленными галогенводородными кислотами с образованием соответствующих галогенидов меди(I):

Cu 2 O +2 H Г→2 Cu Г↓ + H 2 O (Г= Cl , Br , J )

3.Восстанавливается до металлической меди типичными восстановителями, например, гидросульфитом натрия в концентрированном растворе:

2 Cu 2 O +2 NaSO 3 →4 Cu ↓+ Na 2 SO 4 + H 2 SO 4

Оксид меди(I) восстанавливается до металлической меди в следующих реакциях:

1. При нагревании до 1800 °C (разложение):

2 Cu 2 O - 1800 ° C →2 Cu + O 2

2. При нагревании в токе водорода, монооксида углерода, с алюминиеми прочими типичными восстановителями:

Cu 2 O + H 2 - >250°C →2Cu +H 2 O

Cu 2 O + CO - 250-300°C →2Cu +CO 2

3 Cu 2 O + 2 Al - 1000° C →6 Cu + Al 2 O 3

Также, при высоких температурах оксид меди(I) реагирует:

1. C аммиаком (образуется нитрид меди(I))

3 Cu 2 O + 2 NH 3 - 250° C →2 Cu 3 N + 3 H 2 O

2. С оксидами щелочных металлов:

Cu 2 O+M 2 O- 600-800°C →2 М CuO (M= Li, Na, K)

При этом образуются купраты меди (I).

Оксид меди (I) заметно реагирует с щелочами :

Cu 2 O +2 NaOH (конц.) + H 2 O ↔2 Na [ Cu (OH ) 2 ]

б) Гидроксид меди (I ) CuOH

Гидроксид меди(I) образует жёлтое вещество, не растворяется в воде.

Легко разлагается при нагревании или кипячении:

2 CuOH Cu 2 O + H 2 O

в) Галогениды CuF , Cu С l , CuBr и CuJ

Все эти соединения – белые кристаллические вещества, плохо растворимые в воде, но хорошо растворимые в избытке NH 3 , цианидных ионов, тиосульфатных ионов и иных сильных комплексообразователей. Иод образует только соединение Cu +1 J. В газообразном состоянии образуются циклы типа (CuГ) 3 . Обратимо растворимы в соответствующих галогенводородных кислотах:

Cu Г + HГ ↔ H [ Cu Г 2 ] (Г= Cl , Br , J )

Хлорид и бромид меди (I) неустойчивы во влажном воздухе и постепенно превращаются в основные соли меди (II):

4 Cu Г +2 H 2 O + O 2 →4 Cu (OH )Г (Г=Cl, Br)

г) Прочие соединения меди (I )

1. Ацетат меди (I) (СН 3 СООСu) - соединение меди, имеет вид бесцветных кристаллов. В воде медленно гидролизуется до Сu 2 О, на воздухе окисляется до ацетата двухвалентной меди; Получают СН 3 СООСu восстановлением (СН 3 СОО) 2 Сu водородом или медью, сублимацией (СН 3 СОО) 2 Сu в вакууме или взаимодействием (NH 3 OH)SO 4 с (СН 3 СОО) 2 Сu в р-ре в присутствии Н 3 СООNH 3 . Вещество токсично.

2. Ацетиленид меди(I) - красно-коричневые, иногда черные кристаллы. В сухом виде кристаллы детонируют при ударе или нагреве. Устойчивы во влажном состоянии. При детонации в отсутствие кислорода не образуется газообразных веществ. Под действием кислот разлагается. Образуется в виде осадка при пропускании ацетилена в аммиачные растворы солей меди(I):

С 2 H 2 +2[ Cu (NH 3 ) 2 ](OH ) → Cu 2 C 2 ↓ +2 H 2 O +2 NH 3

Данная реакция используется для качественного обнаружения ацетилена.

3. Нитрид меди - неорганическое соединение с формулой Cu 3 N, тёмно-зелёные кристаллы.

Разлагается при нагревании:

2 Cu 3 N - 300° C →6 Cu + N 2

Бурно реагирует с кислотами:

2 Cu 3 N +6 HCl - 300° C →3 Cu ↓ +3 CuCl 2 +2 NH 3

§3. Химические свойства двухвалентной меди (ст.ок. = +2)

Наиболее устойчивая степень окисления у меди и самая характерная для нее.

а) Оксид меди (II ) CuO

CuO - основный оксид двухвалентной меди. Кристаллы чёрного цвета, в обычных условиях довольно устойчивые, практически нерастворимые в воде. В природе встречается в виде минерала тенорита (мелаконита) чёрного цвета. Оксид меди(II) реагирует с кислотами с образованием соответствующих солей меди(II) и воды:

CuO + 2 HNO 3 Cu (NO 3 ) 2 + H 2 O

При сплавлении CuO со щелочами образуются купраты меди (II):

CuO +2 KOH - t ° K 2 CuO 2 + H 2 O

При нагревании до 1100 °C разлагается :

4CuO- t ° →2 Cu 2 O + O 2

б) Гидроксид меди (II) Cu (OH ) 2

Гидроксид меди(II) - голубое аморфное или кристаллическое вещество, практически не растворимое в воде. При нагревании до 70-90 °C порошка Cu(ОН) 2 или его водных суспензий разлагается до CuО и Н 2 О:

Cu (OH ) 2 CuO + H 2 O

Является амфотерным гидроксидом. Реагирует с кислотами с образованием воды и соответствующей соли меди:

С разбавленными растворами щелочей не реагирует, в концентрированных растворяется, образуя ярко-синие тетрагидроксокупраты (II):

Гидроксид меди(II) со слабыми кислотами образует основные соли . Очень легко растворяется в избытке аммиака с образованием аммиаката меди:

Cu(OH) 2 +4NH 4 OH→(OH) 2 +4H 2 O

Аммиакат меди имеет интенсивный сине-фиолетовый цвет, поэтому его используют в аналитической химии для определения малых количеств ионов Cu 2+ в растворе.

в) Соли меди (II )

Простые соли меди (II) известны для большинства анионов, кроме цианида и иодида, которые при взаимодействии с катионом Cu 2+ образуют ковалентные соединения меди (I), нерастворимые в воде.

Соли меди (+2), в основном, растворимы в воде. Голубой цвет их растворов связан с образованием иона 2+ . Они часто кристаллизуются в виде гидратов. Так, из водного раствора хлорида меди (II) ниже 15 0 С кристаллизуется тетрагидрат, при 15-26 0 С – тригидрат, свыше 26 0 С – дигидрат. В водных растворах соли меди (II) в небольшой степени подвержены гидролизу, и из них часто осаждаются основные соли .

1. Пентагидрат сульфата меди (II) (медный купорос)

Наибольшее практическое значение имеет CuSO 4 *5H 2 O, называемый медным купоросом. Сухая соль имеет голубую окраску, однако при несильном нагревании (200 0 С) она теряет кристаллизационную воду. Безводная соль белого цвета. При дальнейшем нагревании до 700 0 С она превращается в оксид меди, теряя триоксид серы:

CuSO 4 ­-- t ° CuO + SO 3

Готовят медный купорос растворением меди в концентрированной серной кислоте. Эта реакция описана в разделе «Химические свойства простого вещества». Медный купорос применяют при электролитическом получении меди, в сельском хозяйстве для борьбы с вредителями и болезнями растений, для получения других соединений меди .

2. Дигидрат хлорида меди (II).

Это темно-зеленые кристаллы, легкорастворимые в воде. Концентрированные растворы хлорида меди имеют зеленый цвет, а разбавленные – голубой. Это объясняется образованием хлоридного комплекса зеленого цвета:

Cu 2+ +4 Cl - →[ CuCl 4 ] 2-

И его дальнейшим разрушением и образованием голубого аквакомплекса.

3. Тригидрат нитрата меди (II).

Кристаллическое вещество синего цвета. Получается при растворении меди в азотной кислоте. При нагревании кристаллы сначала теряют воду, затем разлагаются с выделением кислорода и диоксида азота, переходя в оксид меди (II):

2Cu(NO 3 ) 2 -- →2CuO+4NO 2 +O 2

4. Карбонат гидроксомеди (II).

Карбонаты меди малоустойчивы и в практике почти не применяются. Некоторое значение для получения меди имеет лишь основной карбонат меди Cu 2 (OH) 2 CO 3 , который встречается в природе в виде минерала малахита. При нагревании легко разлагается с выделением воды, оксида углерода (IV) и оксида меди (II):

Cu 2 (OH) 2 CO 3 -- →2CuO+H 2 O+CO 2

§4. Химические свойства трехвалентной меди (ст.ок. = +3)

Эта степень окисления является наименее стабильной для меди, и поэтому соединения меди (III) являются скорее исключениями, чем «правилами». Тем не менее, некоторые соединения трехвалентной меди существуют.

а) Оксид меди (III) Cu 2 O 3

Это кристаллическое вещество, темно-гранатового цвета. Не растворяется в воде.

Получается окислением гидроксида меди(II) пероксодисульфатом калия в щелочной среде при отрицательных температурах:

2Cu(OH) 2 +K 2 S 2 O 8 +2KOH -- -20°C →Cu 2 O 3 ↓+2K 2 SO 4 +3H 2 O

Это вещество разлагается при температуре 400 0 С:

Cu 2 O 3 -- t ° →2 CuO + O 2

Окисид меди (III) – сильный окислитель. При взаимодействии с хлороводородом хлор восстанавливается до свободного хлора :

Cu 2 O 3 +6 HCl -- t ° →2 CuCl 2 + Cl 2 +3 H 2 O

б) Купраты меди (Ш)

Это черные или синие вещества, в воде не устойчивы, диамагнитны, анион – ленты квадратов (dsp 2). Образуются при взаимодействии гидроксида меди(II) и гипохлорита щелочного металла в щелочной среде :

2 Cu (OH ) 2 + М ClO + 2 NaOH →2М CuO 3 + NaCl +3 H 2 O (M = Na - Cs )

в) Калия гексафторкупрат(III)

Зеленое вещество, парамагнитно. Октаэдрическое строение sp 3 d 2 . Комплекс фторида меди CuF 3 , который в свободном состоянии разлагается при -60 0 С. Образуется нагреванием смеси хлоридов калия и меди в атмосфере фтора:

3KCl + CuCl + 3F 2 → K 3 + 2Cl 2

Разлагает воду с образованием свободного фтора.

§5. Соединения меди в степени окисления (+4)

Пока науке известно лишь одно вещество, где медь в степени окисления +4, это гексафторкупрат(IV) цезия – Cs 2 Cu +4 F 6 - оранжевое кристаллическое вещество, стабильное в стеклянных ампулах при 0 0 С. Бурно реагирует с водой. Получается фторированием при высоком давлении и температуре смеси хлоридов цезия и меди :

CuCl 2 +2CsCl +3F 2 -- t ° р → Cs 2 CuF 6 +2Cl 2

а) Плотность и твердость .

Металлы подгруппы меди, как и щелочные металлы, имеют по одному свободному электрону на один ион-атом металла. Казалось бы, эти металлы не должны особенно сильно отличатся от щелочных. Но они, в отличие от щелочных металлов, обладают довольно высокими температурами плавления. Большое различие в температурах плавления между металлами этих подгрупп объясняется тем, что между ион-атомами металлов подгруппы меди почти нет свободного пространства, и они расположены более близко. Вследствие этого количество свободных электронов в единице объема, электронная плотность, у них больше. Следовательно, и прочность химической связи у них больше. Поэтому металлы подгруппы меди плавятся и кипят при более высоких температурах.

Металлы подгруппы меди обладают, по сравнению с щелочными металлами, обладают большей твердостью. Объясняется это увеличением электронной плотностью и более плотной компоновкой атомов в кристаллической решетке. Необходимо отметить, что твердость и прочность металлов зависят от правильности расположения ион-атомов в кристаллической решетке. В металлах, с которыми мы практически сталкиваемся, имеются различного рода нарушения правильного расположения ион-атомов, например, пустоты в узлах кристаллической решетки. К тому же металл состоит из мелких кристалликов (кристаллитов), между которыми связь ослаблена. В Академии Наук СССР была получена медь без нарушения в кристаллической решетке. Для этого очень чистую медь возгоняли при высокой температуре в глубоком вакууме на глубокую подложку. Медь получалась в виде небольших ниточек – “усов”. Как оказалось, такая медь в сто раз прочнее, чем обычная.

б) Цвет меди и её соединений .

Чистая медь обладает и другой интересной особенностью. Красный цвет обусловлен следами растворенного в ней кислорода. Оказалось, что медь, многократно возогнанная в вакууме (при отсутствии кислорода), имеет желтоватый цвет. Медь в полированном состоянии обладает сильным блеском.

При повышении валентности окраска меди и ее соединений темнеет, например, CuCl – белый, Cu 2 O – красный, CuCl + H 2 O – голубой, Cu О - черный. Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем обусловлен интересный практический признак для поисков.

в) Электропроводимость .

Медь обладает наибольшей (после серебра) электропроводимостью, чем и обусловлено её обширное применение в электронике.

г) Кристаллическая решетка .

Медь кристаллизируется по типу централизованного куба (рис 1).

Рисунок 1. Кристаллическая решетка меди.

д) Изотопы .

Природная медь состоит из двух стабильных изотопов - 63 Cu и 65 Cu с распространённостью 69,1 и 30,9 атомных процентов соответственно. Известны более двух десятков нестабильных изотопов, самый долгоживущий из которых 67 Cu с периодом полураспада 62 часа.

§4. Сплавы меди.

Медные сплавы - первые металлические сплавы, созданные человеком. Примерно до середины XXв. по мировому производству медные сплавы занимали 1-е место среди сплавов цветных металлов, уступив его затем алюминиевым сплавам. Со многими элементами медь образует широкие области твёрдых растворов замещения, в которых атомы добавки занимают места атомов меди в гранецентрированной кубической решётке. Медь в твёрдом состоянии растворяет до 39 % Zn, 15,8 % Sn, 9,4 % Al, a Ni - неограниченно. При образовании твёрдого раствора на основе меди растут её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, может значительно повыситься коррозионная стойкость, а пластичность сохраняется на достаточно высоком уровне.

В настоящее время существуют бесчисленные сплавы на основе меди, здесь я приведу три самые основные и распространенные в технике и быту сплавы:

а) Латунь

Латунь – это медный сплав с добавлением цинка. Цинк, содержание которого в составе может доходить до 40%, повышает прочность и пластичность сплава. Наиболее пластична латунь, с долей цинка около 30%. Она применяется для производства проволоки и тонких листов. В состав также могут входить железо, олово, свинец, никель, марганец и другие компоненты. Они повышаю коррозийную устойчивость и механические свойства сплава. Латунь хорошо подвергается обработке: сварке и прокатке, отлично полируется. Широкий диапазон свойств, низкая себестоимость, легкость в обработке и красивый желтый цвет делают латунь наиболее распространенным медным сплавом с большой областью применения.

б) Бронза

Бро́нзы - сплав меди, обычно с оловом в качестве основного легирующего компонента, но к бронзам также относят медные сплавы с алюминием, кремнием, бериллием, свинцом и другими элементами, за исключением цинка (это латунь) и никеля. Как правило в любой бронзе в незначительных количествах присутствуют добавки: цинк, свинец, фосфор и др.

Традиционную оловянную бронзу человек научился выплавлять ещё в начале Бронзового века и очень длительное время она широко использовалась; даже с приходом века железа бронза не утрачивала своей важности (в частности вплоть до XIX века пушки изготавливались из пушечной бронзы)

Самые широко применимые бронзы это: кремниевые бронзы, бериллиевые бронзы, кремниевые бронзы, хромовые бронзы, но, безусловно, самой известной и наиболее применимой является оловянная бронза.

в) Медно-никелевые сплавы

Сплавы на основе меди, содержащие никель в качестве главного легирующего элемента - Мельхиор, Нейзильбер (сплав меди с 5-35% Ni и 13-45% Zn). Никель образует с медью непрерывный ряд твёрдых растворов. При добавлении никеля к меди возрастают её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, сильно повышается стойкость против коррозии. Медно-никелевые сплавы хорошо обрабатываются давлением в горячем и холодном состоянии.

Металлическая медь издавна используется человечеством в самых разных областях жизни. Двадцать девятый элемент из периодической таблицы Д. И. Менделеева, находящийся между никелем и цинком, обладает интересными характеристиками и свойствами. Этот элемент обозначается символом Cu. Это один из немногих металлов с характерной окраской, отличной от серебристого и серого цветов.

История появления меди

О том, какое великое значение имел этот химический элемент в истории человечества и планеты, можно догадаться уже по названиям исторических эпох. После каменного века наступил медный, а за ним - бронзовый, также имеющий прямое отношение к этому элементу.

Медь является одним из семи металлов, которые стали известны человечеству еще в древности. Если верить историческим данным, знакомство древних людей с этим металлом произошло примерно девять тысяч лет назад.

Древнейшие изделия из этого материала были обнаружены на территории современной Турции. Археологические раскопки, проведенные на месте крупного поселения времен неолита под названием Чаталхеюк, позволили отыскать небольшие медные шарики-бусины, а также медные пластины, которыми древние люди украшали свой наряд.

Найденные вещицы были датированы стыком восьмого и седьмого тысячелетий до нашей эры. Помимо самих изделий, на месте раскопок был обнаружен шлак, что говорит о производившихся выплавках металла из руды.

Получение меди из руды было относительно доступно. Поэтому несмотря на свою высокую температуру плавления, этот металл в числе первых был быстро и широко освоен человечеством.

Способы добычи

В природных условиях этот химический элемент существует в двух формах:

  • соединения;
  • самородки.

Любопытным фактом является следующее: медные самородки в природе попадаются гораздо более часто, чем золотые, серебряные и железные.

Природные соединения меди - это:

  • оксиды;
  • углекислые и сернистые комплексы;
  • гидрокарбонаты;
  • сульфидные руды.

Рудами, имеющими наибольшее распространение , являются медный блеск и медный колчедан. Меди в этих рудах содержится всего один-два процента. Первичная медь добывается двумя основными способами:

  • гидрометаллургическим;
  • пирометаллургическим.

Доля первого способа составляет десять процентов. Оставшиеся девяносто относятся ко второму методу.

Пирометаллический способ включает в себя комплекс процессов. Сначала медные руды обогащаются и обжигаются. Затем сырье плавится на штейн, после чего продувается в конвертере. Таким образом получается черновая медь. Превращение ее в чистую осуществляется путем рафинирования - сначала огневого, затем электролитического. Это последняя стадия. По ее окончании чистота полученного металла составляет практически сто процентов.

Процесс получения меди гидрометаллургическим способом делится на два этапа.

  1. Вначале сырье выщелачивается при помощи слабого раствора серной кислоты.
  2. На заключительном этапе металл выделяется непосредственно из упомянутого в первом пункте раствора.

Данный метод используется при переработке только бедных руд, так как, в отличие от предыдущего способа, при его проведении невозможно попутно извлечь драгоценные металлы. Именно поэтому приходящийся на этот способ процент так невелик по сравнению с другим методом.

Немного о названии

Химический элемент Cuprum, обозначаемый символом Cu, получил свое название в честь небезызвестного острова Кипр. Именно там в далеком третьем веке до нашей эры были обнаружены крупные месторождения медной руды. Местными мастерами, трудившимися на этих рудниках, производилась выплавка данного металла.

Пожалуй, невозможно понять, что такое металлическая медь, не разобравшись в ее свойствах, основных характеристиках и особенностях.

При контакте с воздухом этот металл становится желтовато-розового цвета. Этот неповторимый золотисто-розовый оттенок обусловливается возникновением на поверхности металла оксидной пленки. Если эту пленку удалить, медь приобретет выразительный розовый цвет с характерным ярким металлическим блеском.

Удивительный факт: тончайшие медные пластинки на просвет имеют вовсе не розовый, а зеленовато-голубой или, иначе говоря, морской цвет.

В форме простого вещества медь обладает следующими характеристиками:

  • удивительной пластичностью;
  • достаточной мягкостью;
  • тягучестью.

Чистая медь без наличия каких-либо примесей превосходно поддается обработке - ее с легкостью можно прокатить в пруток или лист либо вытянуть в проволоку, толщина которой будет доведена до тысячных долей миллиметра. Добавление примесей в этот металл повышает его твердость.

Помимо упомянутых физических характеристик, этот химический элемент обладает высокой электропроводностью. Эта особенность главным образом определила применение металлической меди.

Среди основных свойств этого металла стоит отметить его высокую теплопроводность. По показателям электропроводности и теплопроводности медь является одним из лидеров среди металлов. Более высокими показателями по этим параметрам обладает только один металл - серебро.

Нельзя не принимать во внимание тот факт, что показатели электро- и теплопроводности меди относятся к разряду базовых свойств. Они сохраняются на высоком уровне лишь пока металл находится в чистом виде. Уменьшить эти показатели возможно добавлением примесей:

  • мышьяка;
  • железа;
  • олова;
  • фосфора;
  • сурьмы.

Каждая из этих примесей в сочетании с медью оказывает на нее определенное влияние, в результате которого значения тепло- и электропроводности заметно понижаются.

Помимо всего прочего, металлическая медь характеризуется невероятной прочностью, высокой температурой плавления, а также высокой температурой кипения. Данные действительно впечатляют. Температура плавления меди превышает одну тысячу градусов Цельсия! А температура кипения составляет 2570 градусов Цельсия.

Этот металл относится к группе металлов-диамагнетиков. Это значит, что его намагничивание, как и у ряда других металлов, происходит не по направлению внешнего магнитного поля, а против него.

Еще одной немаловажной характеристикой можно назвать отличную устойчивость этого металла к коррозии. В условиях высокой влажности окисление железа, например, происходит в несколько раз быстрее, чем окисление меди.

Химические свойства элемента

Данный элемент является малоактивным. При контакте с сухим воздухом в обычных условиях медь не начинает окисляться. Влажный воздух, напротив, запускает окислительный процесс, при котором образуется медный карбонат (II), являющийся верхним слоем патины. Практически моментально этот элемент реагирует с такими веществами, как:

  • сера;
  • селен;
  • галогены.

Кислоты, не обладающие окислительными свойствами, не способны оказывать на медь влияние. Кроме того, она никак не реагирует при контакте с такими химическими элементами, как:

  • азот;
  • углерод;
  • водород.

Кроме уже отмеченных химических свойств, для меди характерна амфотерность. Это значит, что в земной коре она способна образовать катионы и анионы. Соединения этого металла могут проявлять как кислотные свойства, так и основные - это напрямую зависит от конкретных условий.

Области и особенности применения

В древние времена металлическая медь использовалась для изготовления самых разных вещей. Умелое применение этого материала позволило древним людям обзавестись:

  • дорогой посудой;
  • украшениями;
  • инструментами, имеющими тонкое лезвие.

Сплавы меди

Говоря о применении меди, нельзя не упомянуть о ее значении в получении различных сплавов, в основу которых ложится именно этот металл. К таким сплавам относятся:

  • бронза ;
  • латунь.

Две эти разновидности явяются основными видами медных сплавов. Первый бронзовый сплав был создан на Востоке еще за три тысячелетия до нашей эры. Бронза по праву может считаться одним из величайших достижений металлургов древности. По сути, бронза - это соединение меди с прочими элементами. В большинстве случаев в роли второго компонента выступает олово. Но вне зависимости от того, какие элементы входят в сплав, основным компонентом всегда является медь. Формула латуни содержит главным образом медь и цинк, но возможны и дополнения к ним в виде других химических элементов.

Помимо бронзы и латуни, этот химический элемент участвует в создании сплавов с другими металлами, среди которых алюминий, золото, никель, олово, серебро, титан, цинк. Медные сплавы с неметаллами, такими как кислород, сера и фосфор, используются гораздо реже.

Отрасли промышленности

Ценные свойства медных сплавов и чистого вещества способствовали их использованию в таких отраслях, как:

  • электротехника;
  • электромашиностроение;
  • приборостроение;
  • радиоэлектроника.

Но, разумеется, это еще не все области применения этого металла. Он является высокоэкологичным материалом. Именно поэтому он используется при строительстве домов. Например, кровельное покрытие, выполненное из металлической меди, благодаря своей высочайшей коррозийной устойчивости обладает сроком службы более сотни лет, не требуя при этом особого ухода и покраски.

Еще одна область использования этого металла - ювелирная отрасль. В основном он применяется в форме сплавов с золотом. Изделия из медно-золотого сплава характеризуются повышенной прочностью, высокой стойкостью. Такие изделия на протяжении долгого времени не деформируются и не истираются.

Соединения металлической меди выделяются высокой биологической активностью. В мире флоры этот металл имеет важное значение, так как он участвует в синтезе хлорофилла. Участие данного элемента в этом процессе позволяет обнаружить его в числе компонентов минеральных удобрений для растений.

Роль в организме человека

Нехватка этого элемента в человеческом организме может оказать негативное влияние на состав крови, а именно ухудшить его. Восполнить дефицит этого вещества можно при помощи специально подобранного питания. Медь содержится во многих продуктах питания, поэтому составить полезный рацион по душе не составит труда. Для примера, одним из продуктов, в составе которых имеется этот элемент, является обычное молоко.

Но составляя насыщенное этим элементом меню, не следует забывать о том, что переизбыток его соединений может привести к отравлению организма. Поэтому, насыщая организм этим полезным веществом, очень важно не переусердствовать. И касается это не только количества потребляемых продуктов.

К примеру, пищевое отравление может вызвать использование медной посуды. Приготовление пищи в такой посуде крайне не рекомендуется и даже воспрещается. Связано это с тем, что в процессе кипячения в пищу поступает значительное количество этого элемента, что может привести к отравлению.

В запрете на медную посуду есть одна оговорка. Использование такой посуды не представляет опасности в том случае, если ее внутренняя поверхность имеет оловянное покрытие. Только при выполнении этого условия использование медных кастрюлек не несет угрозы пищевого отравления.

Помимо всех перечисленных отраслей применения, распространение этого элемента не обошло стороной и медицину. В сфере лечения и поддержания здоровья он применяется в качестве вяжущего вещества и антисептика. Этот химический элемент входит в состав капель для глаз, которые используются при лечении такого заболевания, как конъюнктивит. Кроме того, медь является немаловажным компонентом различных растворов от ожогов.

Медь (Cuprum, Сu) – ковкий пластичный металл красноватого оттенка, на разрезе или изломе — розоватого цвета, в тонких местах можно наблюдать голубовато-зеленоватый. Если этот металл будет находиться во влажном месте, на поверхности образуется тонкая зеленоватая пленка — окись.

Человечеству медь известна с самых древнейших времен. Она сыграла немалую роль в становлении цивилизации и развитии культуры, в том числе материальной. Длительное время различные сплавы из нее служили материалом для изготовления оружия и орудий труда, использовали в промышленности, делали различные украшения, применяли в медицине.

В древности, а именно во времена античности, медь, как считают специалисты, была, чуть ли не самым популярным средством в лечебной практике, так как считалась очень доступной, даже для беднейших слоев населения. Медная монета или украшение были у каждого. Врачеватели того времени были всецело убеждены в различных полезных свойствах этого металла.

Древнегреческий философ, поэт и врач Эмпедокл, всегда носил медные сандалии, считая, что они помогают улучшать самочувствие, а Аристотель утверждал, что этот металл нужно применять , синяках и отечности и, даже когда спал, не выпускал из рук медный шарик.

Римский философ, медик, хирург часто обращался к медетерапии (готовил смесь уксуса и меди), а Авиценна после операции по удалению миндалин, особенно гнойных, рекомендовал полоскать полость рта раствором из воды и уксуса, а затем к ране приложить медный купорос.

На Руси также использовали медь в лечебных целях. Было замечено, что рабочие, которые добывали красный металл, во времена страшных эпидемий холеры не болели, а бурлаки, которые подкладывали под пятки пятаки, заражались холерой или чумой значительно реже. В качестве профилактического средства от эпилепсии или рахита, врачи советовали надевать медные браслеты.

В настоящее время медь — ничуть не меньший по популярности металл, который используется нетрадиционной медициной. Если говорить о восточной медицине, то существует мнение, что болевые точки человека имеют немного сниженный электрический потенциал и являются хорошим проводником тока одного заряда. Кроме того, через кожные поры проходит пот, своеобразный электролит, благодаря которому ионы меди проникают глубоко в тело.

Для лечения можно взять медную монету или пластину, можно прикрепить пластырем к определенным участкам на теле и носить круглосуточно, даже если на теле появились пятна зеленоватого цвета.

Некоторые народные целители утверждают, что пластырем не стоит прикреплять медь, а лучше прибинтовать к больному участку. Обычно такое лечение длится до 5 дней, но иногда курс может продлиться на несколько недель, а то, и месяц. После того как монеты (пластины) сняты, кожу нужно промыть водой с мылом.

В лечебных целях лучше всего применять хорошо отшлифованные тонкие пластины или диски, сделанные из чистой меди. Специалисты утверждают, что самые лучшие монеты – петровского времени, так как тогда плавили их без примесей, но найти такие деньги практически невозможно, поэтому подойдет вариант советского образца до 1961 года выпуска, это медно-алюминиевый сплав, но содержание интересующего нас металла в нем очень высокое.

Медь как химический элемент обнаружена в составе жизненно важных ферментов, а при ее нехватке развиваются серьезные заболевания.

Лечебные свойства


Ионы меди оказывают положительное влияние на состояние организма человека:

  • антибактериальное;
  • обезболивающее;
  • кровоостанавливающее;
  • жаропонижающее;
  • гармонизирующее нервную систему;
  • противоопухолевое.

При наружном применении обычная аппликация из меди может снять воспалительный процесс, обезболит, ускорит созревание нарыва, обеззараживает инфекционные очаги.

При доброкачественных опухолях медные пластины оказывают положительное воздействие — убирают , лечат мастопатию и даже .

Медь благоприятно действует на сердечно-сосудистую систему. При в подключичную ямку прикладываются монеты и держатся до облегчения состояния.

Как лечиться медью

Марки меди, наиболее подходящие для лечения — МГ, МОО, МОБ, медь вакуумная.

Именно в этих марках процент полезного металла наиболее высок.

Чтобы понять, подходит ли вам лечение, нужно приложить кусочек меди к больной зоне на ночь или даже на 24 часа. Если пластина буквально приклеилась к коже, то положительного лечебного эффекта можно ожидать.

После удаления пластины на коже может оставаться зеленый налет. Это значит, что пластина «работает». Если его не наблюдается, нужно заменить марку меди или поменять место наложения.

Бытует мнение, что она сама прилипает на правильные места и даже не нуждается в дополнительной фиксации. По окончании лечения отпадает.

Лечение медными пластинами или монетами показано людям любого возраста. Особенно ценными и сильными считаются монеты царской чеканки и советские с 1930 до 1957 года, а также 2, 3, 5 — копеечными до 1961 года. Можно пользоваться и специальными медными дисками или пластинами из красной меди, которые приобретаются в аптеках нетрадиционной медицины.

Суставы рук и ног можно лечить медной проволокой. Для этой цели она должна быть хорошо очищена и выдержана 2 часа в уксусной эссенции. Проволокой обматывают больной сустав конечности, можно поясницу. Дополнительный лечебный эффект возникает из-за возникающих круговых микротоков.

Чтобы «оживить» металл, перед применением монетки кипятят в слабосоленом растворе, промывают, прокаливают на огне, чистят мелкой наждачкой.

Медные браслеты из вакуумной меди содержат более 99% чистого металла, они должны иметь замкнутый контур и не содержать никаких вставок из других металлов. Такими браслетами хорошо лечится гипертония (правая рука) и гипотония (левая рука). Браслет должен как можно плотнее прилегать к коже, быть хорошо отполированным. Носить нужно на зоне запястья, где прослушивается пульс. Отмечено положительное влияние медных браслетов не только , но и при метеозависимости, слабом иммунитете, при невынашивании беременности, мигренях, артрите, радикулите.

В медицине Тибета применяются медные банки. применяют их , при бронхо-легочных заболеваниях. А русские знахари ставили такие банки на живот при опущении внутренних органов.

Если кипятить медные монеты в воде, получается средство для внутреннего применения, стимулирующее работу внутренних органов. Однако эти сведения недостаточно подтверждены практикой.

Применение при различных заболеваниях

Народные целители утверждают, что аппликация из медных монет может снять температуру и воспалительные процессы в организме человека, в том числе — воспаление суставов, снимет болевые ощущения, способствует созреванию нарывов.

С помощью такой аппликации можно лечить гинекологические заболевания, в том числе фиброму матки (прикладывать к низу живота), мастопатию (прикладывать к груди).

Медью, по утверждению целителей, можно останавливать кровотечение, устранять грыжу, применяются ее аппликации после инфаркта для стабилизации общего состояния, они же способствуют снижению радиационного воздействия при облучении.

  1. . На ночь наложите монеты или диски накладываются на область миндалин. затем горло обвязывают теплым платком. Время выдержки от 9 до 12 часов.
  2. . Компрессы из медной воды прикладывают к больным местам на 3-4 часа.
  3. . Носить монеты на тех местах ноги, где они сами хорошо прикрепились, до тех пор, пока сами не отпадут.
  4. . На область гайморовых пазух монеты прикладывают на ночь.
  5. . Медная монета закладывается ребром меду ягодицами поближе к анальному отверстию. Пластину закрепляют чуть повыше на копчике.
  6. . На лоб, виски и затылок прикладывают монеты или диски, в положении тела лежа. Через 30 минут боль спадает.
  7. При доброкачественных опухолях, если диагноз действительно подтвержден. Аппликации на кожу над зоной опухоли. Держать 7 дней, перерыв 3 дня, еще 7 дней.
  8. Женские болезни. Зона прикладывания — низ живота. Медь прикладывается на 30 минут.
  9. При катаракте и глаукоме. Прикладываем пятак (пластину) на дугу, которая идет от угла глаза к виску. пятак должен сам хорошо прилипнуть к коже.
  10. При переломах и ушибах. Аппликации из медных пластин накладывается на то место, где медь сама хорошо прилипает. Через неделю пластину переносим на другое место. Держим до полного излечения. В первые часы лечения возможен небольшой отек, ощущение тепла, усиление боли, что быстро проходит. При ощущении привкуса металла во рту, лечение прекращают.
  11. При рубцах и спайках. Непосредственно на зону рубца или спайки прикладывают медь.
  12. . Пьют медную воду по по 2 — 3 столовые ложки перед едой 3 раза в день в течение месяца. Несколько курсов лечения с перерывами по 5 — 7 дней.
  13. При сердечных болях, после инфаркта. В подключичную ямку медный диск, если он сцепляется с кожей, оставляем на 10 дней, фиксируем пластырем. На ночь не снимать.
  14. . За ухо, на выпуклую кость, ставим 2 — копеечную монету. Вторую — на козелок.
  15. При шуме в ушах монету ставят сзади на шею.

Медь, так же как серебро и золото, имеет бактерицидные свойства, поэтому ее можно использовать как антисептик при стерилизации воды. Такой водой можно полоскать горло и промывать глаза.

Официальная медицина не отрицает полезных свойств меди и применяет ее для приготовления лекарственных препаратов. Например, сульфат меди применяют при ожогах фосфором, он же применяется как антисептическое средство в каплях для глаз. Нитрат меди применяют в глазных мазях.

Если медь соединить с витамином С, то это значительно повысит сопротивляемость организма к инфекциям.

Медь в продуктах питания

Огромное значение медь играет в организме человека, а именно, способствует обмену веществ и процессу роста, обеспечивает организм человека энергией. Она служит антиоксидантной защитой, что значительно продлевает нашу жизнь, участвует в строении соединительной ткани – эластина, меланина и коллагена. Ежедневно человек с пищей должен потреблять не менее 2 мг меди, а при больших физических нагрузках – не менее 3 мг, примерно такая же доза необходима больному, страдающему ишемией сердца.

Существует множество продуктов, в которых содержится медь.

  • Это орехи, какао, горох, грибы (подберезовики, белый гриб, лисички, шампиньоны).
  • Медь содержится в морепродуктах, в печени палтуса и трески, немало ее и в гречневой и овсяной каше, в ржаном и пшеничном хлебе.
  • Кроме этого медь встречается в лекарственных травах: зверобое, полыни, тысячелистнике, душице.

Противопоказания

Стоит знать, что лечение медью помогает не всегда и не всем. Именно поэтому нужно пройти тщательное обследование, чтобы установить причину заболевания, поскольку можно будет спровоцировать ухудшение состояния, если воздействовать на вторичный очаг заболевания.

Народные целители рекомендуют простой способ, чтобы определить, поможет лечение медью или нет. Если монетка легко удерживается на теле и под ней постепенно меняется окраска кожи, значит, лечение будет успешным, если такого не произошло, то медетерапия может причинить неприятные ощущения, а то и осложнения.

При употреблении меди внутрь, когда не соблюдается дозировка, возможны отравления ее солями. Передозировка вызывает рвоту, бывают судороги, диарея, происходит ослабление сердечной деятельности и дыхания, наступает удушье, возможна даже кома. Правда, подобные отравления бывают крайне редко. Чтобы избежать подобной ситуации, необходимо все свои действия согласовывать с лечащим врачом.

Всего вам самого доброго!

Рекомендуем почитать

Наверх